新可燃物処理施設整備計画 (素案)

平成 25 年 12 月

鳥取県東部広域行政管理組合

目 次

はし	گ گ	かし	Ξ	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	1
1.	ħ	包言	殳	整備	基	本	方針	-																										
	1.		1	挩	10設	整	備基	本	方金	 の	位	置	付	け	ع	役	割													•		•		2
	1 .	:	2	於	12	整	備基	本	方金	ł	•	•	•	•	•	•	•	•		•	•	•		•	•	•	•	•	•	•	•	•	•	2
2	_	k −t	佐言	- ロッ	s <i>h</i> ⊓ :	IB :	を行	: > -	- ` 1	ı	括	米石	(bп	I⊞	5.1	会	H <i>∕</i> m	١															
					よじ		_	ر -	_ 07	رن م	'作里 -	块-	_ (χυ. -	垤 -	ניא -	涿	19J -	, .	_		_		_			_	_	_	_				4
	2.					ונא	_	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
					5法		I	. M -	<i>4</i> 7	_																								4
					1		検討																											
							廃プ ム																											
							ケー			(0)	排	出	里	(U	推																			
						-	評価	万次	去	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8
1				-	討		-						_		_																			
							ケー																											
							定性																								٠			
	2	2 .	į	3.	3	5	定量	評値	Ш	(経	済	性)	の	結																			
2	2 .	4	4	ま	٤٤	め	•	•		•	•	•	•	•	•	•	•	•	٠	٠	•	•	٠	•	•	•	•	•	•	•	•	•	1	5
2	-	k -t	左言	<u></u> ይ σ	い抜き	≣ம்	規模	ī																										
	ź.				たじ																												2	\cap
					たし、 ŧ計:																												_	
•							四 処理	1444	₽₩	h tati	;																						2	\cap
							延母 ごみ					<u>-</u> =+·	<u>-</u>	注																				
					∠ ŧ計:			*17Fi	山里	<u>.</u> U)	'扩压	ĒΙ	Л	冱			•			•	•	•		•			•	•	•	•	•	•	2	U
,							-	. EZ 4			_																						^	_
							行政						•	• = 1	• /±	•	•	•	•	•	•	•	•	•	•	•								
							ごみ) 기 국	*	推	ĒΤ	1世		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2	О
,							み量 <i>**</i> :=	_	-																								_	_
							災害																											
							災害																											
							他施																											
							象量	-		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3	3
					范 設:																													
;							没規																											
							算定																											
	:	3	(6	3	1	施設	規構	草訳	泞定	コニ	儑	る	曲	白	治	体	<i>ന</i>	動	向													3	4

4.	本施	設の	炉数	計画																								
4	. 1	は	じめ	1=							•			•		-									•	•	3	6
4	. 2	炉	数の	検討	方法																							
	4.	2.	1	経済	性の	検討	寸方	法			•	•		•					•	•		•			•		3	6
	4.	2.	2	炉の	補修	点核	食時	のネ	讨厉	た性	の	検	討:	方	法				•	•		•	•	•	•		3	7
	4.	2.	3	その	他の	比較	变要	素(の村	負討	方	法		•	•	-			•	•		•	•	•	•		3	7
4	. 3	検	討結	果																								
	4.	3.	1	経済	性の	検言	寸結	果				•			•	-				•					•		3	7
	4.	3.	2	炉の	補修	点核	負時	のタ	讨厉	た性	1=	関	す	る	検	计糸	吉見	艮		•					•		3	8
	4.	3.	3	その	他の	比較	变变	素(の村	負討	·結	果															3	9
	4.	3.	4	結論	•							•				-											4	0
5.	本施	設の	計画	ごみ	質																							
5	5. 1	目目	的																								4	2
5	5. 2	計i	画ご	み質	の設	定プ	5法																					
	5.	2.	1	環境	影響	評值	面に	おり	ナる	る計	·画	ご	<i>a</i>	質(の	设员	ミブ	与法	ځ	設	定	値					4	2
	5.	2.	2	本検	討に	おい	ける	各:	シナ	١J	才	ග ි	計i	画	ت¿	み賃	訂	殳定	方	法							4	3
5	5. 3	各	ごみ	質の	設定																							
	5.	3.	1	可燃	ごみ	のこ	゛み	質(の記	设定																	4	5
	5.	3.	2	軽量:	残渣	ごみ	ナの	٣ź	み賃	复の	設	定															5	2
	5.	3.	3	災害	ごみ	のこ	ごみ	質(の言	设定																	5	3
	5.	3.	4	プラ	スチ	ック	っご	340	カこ	ごみ	·質	の	設:	定													5	3
	5.	3.	5	ペッ	トボ	トル	レご	みの	カこ	ニ゙み	質	及	び	白′	色	١٠	, ,	ر <u>ت</u>	<i>" H</i>	·の	ؾٞ	み	質	ග	設	定	5	4
5	5. 4	計i	画ご	み質	。 の検	討									_			-								. –		
	5.	4.	1	施設	整備	計通	回目	標纸	年月	复に	お	ゖ	る	シ.	၂	リス	上 另	IJσ.	処	理	対	象	量				5	4
	5.	4.																									5	
											_					-												
6.	本施	設の	処理	方式																							7	4
7.	本施	設の	事業	実施	方式																						8	6
- •			1		\																						_	-
参老	資料																											
		次報4	生聿	: 1-	医ス	, ° -	ブロ	w ₁ /	-	¬ ⊀	٠,	L	<i>ന</i> '	宇	饰名	生国	■ .										Q	Q

はじめに

鳥取県東部広域行政管理組合(以下「本組合」という。)では、新しい可燃物処理施設整備事業を推進するにあたり、本年3月から、それまでの専門委員に市民委員等を加えた「可燃物処理施設整備検討委員会」を設置し、施設の基本的な内容等について検討を重ねてまいりました。

先般、この検討委員会より、施設の整備方針や基本仕様等に関する「第3次報告書」が 提出されたことから、構成自治体と協議の上、本組合としてパブリックコメントを実施い たしました。鳥取県東部圏域の住民の皆様から様々なご意見をいただき、感謝申し上げる 次第であります。

このたび、お寄せいただいたご意見を参考にさせていただきながら、本組合として「新可燃物処理施設整備計画」を策定いたしました。この計画は、事業実施にあたっての根幹となるもので、整備の基本となる5つの方針及び処理対象物・施設規模・炉数・計画ごみ質・処理方式といった基本仕様、さらには事業実施方式について、本組合の考え方を示したものとなっています。

今後、本計画の内容を広く圏域の住民の皆様にお知らせするとともに、ご理解をいただきながら、安全で安心な可燃物処理施設として整備を進めてまいります。

1. 施設整備基本方針

施設整備基本方針は、本施設の設計、建設、運営に際して指針となるもので、以下のとおりとします。

- (1)万全の環境保全対策を講じた施設とすること
- ②ごみを安全かつ安定的に処理できる施設とすること
- ③資源の循環とごみの持つエネルギーの有効利用に貢献する施設とすること
- 4周辺環境との調和と多様な機能により地域が誇りに思える施設とすること
- ⑤運営管理が容易で経済性・耐用性に優れた施設とすること

1. 1 施設整備基本方針の位置付けと役割

本施設は、鳥取県東部圏域内における循環型社会及び低炭素社会形成の中核を担う重要な施設となります。また、周辺地域はもとより鳥取県東部圏域の住民の方々にとって安全で安心な施設であるとともに、地域の方々が誇りに思える施設であることが必要です。

施設整備基本方針は、このような本施設のあるべき姿を踏まえ、国、県が示す上位計画なども考慮しつつ、本施設が目指す姿を住民の方々にわかり易く伝える「標語」として位置付けられるものです。

同時に施設整備基本方針は、本施設が何を重視する施設であるのかについて、明示的な判断基準を指し示す役割も担っており、設計、建設、運営に際しての拠りどころとして機能するものです。

1. 2 施設整備基本方針

以下に、施設整備基本方針及びその解説を示します。なお、施設整備基本方針は、記述順に 関係なくいずれも同じ重要度であるものとします。

① 万全の環境保全対策を講じた施設とすること

・ 周辺環境及び地球環境の保全に配慮するものとし、施設整備に際しては万全の環境保全対策を講じることとします。

② ごみを安全かつ安定的に処理できる施設とすること

- ・ 現行の4施設体制に替わる鳥取県東部圏域内の唯一施設として、搬入されるごみを将来に わたって安全かつ安定的に処理する能力、機能が確保されていることとします。
- 災害に強く、かつ災害時等に発生したごみにも適切に対応できる施設であることとします。

③ 資源の循環とごみの持つエネルギーの有効利用に貢献する施設とすること

・ ごみを資源として再利用する資源循環を前提とした施設であるとともに、地球温暖化防止 対策やエネルギーの有効利用の観点からごみ発電を行う等、ごみの持つエネルギーを最大 限に有効利用できる施設とします。

④ 周辺環境との調和と多様な機能により地域が誇りに思える施設とすること

- 周辺環境と調和したデザインとし、親しみの持てる施設とします。
- ・ 単なる「ごみ処理施設」ではなく、循環型社会や低炭素社会に関する知識や情報を得ることができる等、環境教育・環境活動の拠点としての機能を持つこととします。
- ・ 地震等の災害時においては、地域住民の緊急避難場所としての機能や、電力供給源として の機能等も備えることとします。

⑤ 運営管理が容易で経済性・耐用性に優れた施設とすること

- ・ 運転操作やメンテナンスが容易であり、かつ、建設費、運営管理費、最終処分経費を含め た全体経費が低減された施設であることとします。
- 長寿命化を考慮した施設であることとします。

2. 本施設で処理を行うごみの種類(処理対象物)

鳥取県東部圏域における循環型社会の形成とごみの適正処理を進めていくために、本施設整備事業の前提となる分別方法を中心としたごみ処理システムについて、環境保全性・住民利便性・経済性等といった多様な視点から幅広く検討した結果、本施設において処理を行う廃棄物の種類(処理対象物)は、次のとおりとします。

①収集可燃ごみ (家庭から排出される可燃ごみ)

②事業系可燃ごみ (事業所などから排出される可燃ごみ)

③直搬可燃ごみ (家庭や事業所から、直接施設へ持ち込まれる可燃ごみ)

④し渣 (し尿処理施設で回収されるし尿及び浄化槽汚泥等の夾雑物)

⑤軽量残渣 (資源化施設で発生するフィルム状のプラスチック類等)

⑥災害ごみ (台風、大雨、地震等の災害に伴い発生する可燃ごみ)

2. 1 はじめに

本施設における処理対象物は、住民生活と密接に関連するごみの分別区分や施設の規模・設計等に関係する重要な検討事項です。

このため、鳥取県東部圏域にふさわしい処理対象物について、特に廃プラスチック類の 取り扱いについて7つのケースを設定し、これらのケースの環境保全性、住民利便性及び 経済性の視点から比較評価を行いました。

2. 2 方法

2. 2. 1 検討の対象

鳥取県東部圏域におけるごみ処理の流れを図2-1に示します。処理対象物の検討は、 図中★印を附した廃プラスチック類の取り扱いを中心に行いました。

廃プラスチック類は、化石燃料を原料としており、高いエネルギーを持つことから、焼 却によるエネルギー回収が期待されます。一方で、容器包装リサイクル法により、マテリ アルリサイクルが推進されており、鳥取県東部圏域では、基本的には分別回収によるマテ リアルリサイクルを実施しています。

鳥取県東部圏域におけるごみ種類の定義は表2-1のとおりであり、表中%印が附してあるものは、つぎの理由で焼却対象とします。

収集可燃ごみ、事業系可燃ごみ、直搬可燃ごみ、し渣については、現在も焼却対象であり、本施設においても引き続き処理対象とします。軽量残渣は、容器包装リサイクル法に基づくリサイクルルートがないことや現状では埋立処分されていることから、最終処分場の延命化にもつながるため、本施設の処理対象とし、焼却処理するものとします。なお、災害ごみについては、発災後の迅速な復旧に資するため、一定量を処理対象とします。

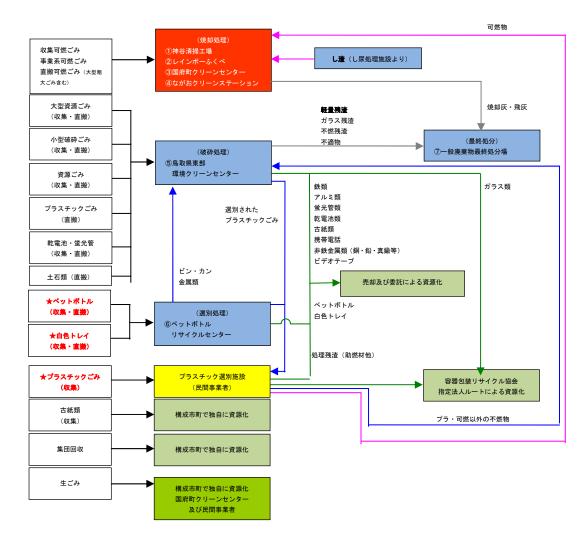


図 2 − 1 鳥取県東部圏域におけるごみ処理の流れ (図中★印は、処理対象物の検討対象品目)

表2-1 ごみ種類の定義

項目	定義
※収集可燃ごみ	主に家庭からごみステーションに排出され、市町から委託された業者が収集する可燃ごみ。
※事業系可燃ごみ	鳥取市において、事業所等から排出され、収集運搬業の許可を持つ業者が事業所等との契約に基づき収 集する可燃ごみ。
※直接搬入可燃ごみ	住民又は事業者が、直接、鳥取県東部圏域の焼却施設に持ち込んだ可燃ごみ (統計上は可燃性の粗大ご) みを含んでいる)。
大型資源ごみ	不燃性の大型ごみで家電リサイクル法対象品を含まない。鳥取市では戸別有料収集で他の4町はステー ション収集。
小型破砕ごみ	家庭からごみステーションに排出され、市町から委託された業者が収集する資源ごみ、プラスチックご み、乾電池等を除く小型の不燃物。
資源ごみ	家庭からごみステーションに排出され、市町から委託された業者が収集する缶類、ビン類。
乾電池・蛍光管	家庭からごみステーションに排出され、市町から委託された業者が収集する使用済みの乾電池 (一次電池)、蛍光管、水銀体温計。
ペットボトル	家庭からごみステーションに排出され、市町から委託された業者が収集するペットボトル。
白色トレイ	ごみステーションに排出され、市町から委託された業者が収集する白色の食品トレイ。
プラスチックごみ	家庭からごみステーションに排出され、市町から委託された業者が収集するブラスチックごみで、ペットボトル及び白色トレイ以外の容器包装用プラスチック類及び容器包装類以外の廃プラスチック類。汚れたものは軽く洗って排出することとされる。
古紙類	新聞、書籍・雑誌・段ボール等の古紙類のうち、ごみステーションで回収されるもの。
集団回収	鳥取県東部圏域内で町内会等が行う古紙等の回収。
生ごみ	鳥取市内(国府町)においてモデル地区で分別回収している厨芥類。
※軽量残渣	鳥取県東部環境クリーンセンターにおける破砕選別工程から軽量物として選別される破砕物。木類、紙 類、プラスチック類等から構成される。
※し渣	し尿処理施設の処理工程にて発生するし渣(夾雑物等)。
※災害ごみ	台風、大雨、地震等の災害により発生したごみ。

2. 2. 2 廃プラスチック類の取り扱いに関するケースの設定

廃プラスチック類について、現行の分別方法をもとに6つに分類しました。プラスチックごみは容器包装類(ペットボトル及び白色トレイを除く)及び容器包装用途以外のプラスチック類(以下、「製品プラスチック類」という。)に大別し、さらにそれぞれを「きれいなもの」と「汚れたもの」に区分しました。汚れた容器包装類(ペットボトル及び白色トレイを除く)とは、中身の残ったマヨネーズ、ケチャップ等の容器、弁当ガラ等であり、汚れた製品プラスチック類とは、土のついたプラスチック製プランターや鉢、使い捨てのプラスチック製食器類等です。容器包装類のペットボトル(以下、単に「ペットボトル」という。)及び容器包装類の白色トレイ(以下、単に「ペットボトル」という。)は現行の分別方法のとおりとしました。

次に、処理方法について3通りを設定しました。ひとつは、分別を行いそれぞれの特性に応じた再生利用を行う方法であり、現状のリサイクル方法等を参考に、プラスチック類を原料として製品等を製造するマテリアルリサイクル(以下、「原料利用」という。)、熱源としての利用を行うもの(以下、「熱利用」)としました。素材利用においては、容器包装リサイクル法の定めによりプラスチック製品の原料、土木資材及び製鉄高炉還元剤等に再生されます。熱利用においては、製紙会社等のボイラ熱源等に利用されます。

もうひとつは、処理対象物とすることにより焼却発電を行う方法(以下、「焼却発電」という。)であり、焼却発電により未利用エネルギーである廃プラスチック類の持つエネルギーを本施設により電気等に転換しようとするものです。

廃プラスチック類の6つの分類ごとに想定される3つの処理方法をあてはめ、表2-2に示す7つのケースを設定しました。

ケース1は、廃プラスチック類の全てを焼却発電に利用するもので、廃プラスチック類は可燃ごみとして排出します。

ケース 2 は、ペットボトル及び白色トレイのみを分別し素材利用するもので、プラスチックごみはケース 1 と同様に可燃ごみとして排出します。

ケース 3 は、ペットボトル及び白色トレイに加え、きれいな容器包装類(ペットボトル及び白色トレイを除く)を分別し素材利用するもので、汚れた容器包装類(ペットボトル及び白色トレイを除く)は洗うのではなく、汚れたまま可燃ごみとして排出します。製品プラスチック類も可燃ごみとして排出します。

ケース4は、ペットボトル及び白色トレイに加え、きれいな容器包装類(ペットボトル及び白色トレイを除く)及びきれいな製品プラスチック類を分別しそれぞれ素材利用、熱利用に供するものです。なお、汚れた容器包装類及び汚れた製品プラスチック類は可燃ごみとして排出します。

ケース5は、ペットボトル及び白色トレイに加え、きれいな及び汚れた容器包装類(ペットボトル及び白色トレイを除く)を分別するもので、汚れた容器包装類は洗浄して排出するものとし、素材利用されるものとします。製品プラスチック類は汚れているかいないかに係らず可燃ごみとして排出します。

ケース6は、ペットボトル及び白色トレイに加え、きれいな及び汚れた容器包装類(ペットボトル及び白色トレイを除く)及びきれいな製品プラスチック類を分別しそれぞれ素材利用、熱利用に供するものです。汚れた製品プラスチック類は可燃ごみとして排出します。

ケース7は、廃プラスチック類全てを分別するもので、現在の分別区分です。

プラスチックごみ※ 容器包装類 容器包装類 容器包装類 容器包装用途以外のプラスチ ケース (ペットボトル及び白色トレイを除く) ック類 (製品プラスチック類) (ペットボトル) (白色トレイ) きれいなもの 汚れたもの きれいなもの 汚れたもの 焼却発電 1 焼却発電 焼却発電 焼却発電 焼却発電 焼却発電 焼却発電 焼却発電 焼却発電 焼却発電 素材利用 素材利用 3 素材利用 焼却発電 焼却発電 焼却発電 素材利用 素材利用 4 素材利用 焼却発電 熱利用 焼却発電 素材利用 素材利用 5 素材利用 焼却発電 素材利用 素材利用 素材利用 焼却発電 6 素材利用 素材利用 熱利用 焼却発電 素材利用 素材利用 7 素材利用 素材利用 熱利用 熱利用 素材利用 素材利用

表2-2 検討ケースと廃プラスチック類取り扱いの関係

2. 2. 3 ケースごとの排出量の推計方法

廃プラスチック類の取り扱いにケースごとの排出量を推計しました。

推計は、平成 29 年度におけるごみ排出量推計結果をもとに、本組合が行ったごみ組成調査結果、国等で行われているごみ組成調査結果を用いて廃プラスチック類 6 種類ごとの排出量を推計し、これらを組み合わせることにより行いました。

[%]プラスチックごみとは、鳥取県東部圏域における分別区分によるものとします (表 2-1 参照)。

2. 2. 4 評価方法

各ケースの評価は、表 2-3に示す定性評価と定量評価に係る視点ごとに行いました。定性評価は、6 つの視点について考察を行い、それぞれ \odot (好ましい)、 \odot (普通)、 Δ (好ましくない)の3段階で評価を行いました。定量評価は、各ケースにおける処理対象物の量及びプラスチックごみとしての分別量を求め、これらの量をもとに、本組合で検討を行った「プラスチック混焼に関する比較検討について」で用いた方法により、経済性について検討を行いました。

区分 主な視点 定性的視点 分別のわかり易さ 家庭内での保管について 排出の負担について 集積場所の管理 環境保全への住民理解 環境意識向上への効果 定量的視点 経済性 ①収集運搬費 ②プラスチック処理費 ③維持管理費 ④売電による収益 ⑤ 建設費

表2-3 評価の視点

2. 3 検討結果

2. 3. 1 ケースごとの排出量(平成29年度)

ケースごとの平成29年度における排出量の推計結果を表2-4に示しました。

平成 29 年度の鳥取県東部圏域におけるごみの総排出量は集団回収量を除くと 67,688t/年 (185.45t/日)となります。このうち、収集可燃ごみは 33,838t/年 (92.71t/日)、プラスチックごみは 2,952t/年 (8.09t/日)となります (3.施設規模の設定を参照)。プラスチックごみには容器包装類以外にその他のプラスチック類及びレジ袋が含まれ、さらに分別ミスによりペットボトル、白色トレイ及びプラスチック以外のごみが少量混在します。プラスチックごみ中の容器包装類は 67.35% (1,988t/年)とされます(平成 24 年度ごみ質調査結果より)。

プラスチックごみとして収集された容器包装類のうち、きれいなもの、汚れたものの量は、きれいなものが 1,392 t/年、汚れたもの(洗浄したものを含む)が 596 t/年と推定されました。なお、この推計の前提として、汚れた容器包装類は、可燃ごみ、プラスチックごみの双方に混入しているとしました。これは、添付資料 2-1 に示すように、原則としては汚れたものは洗浄して排出するよう指導されていますが、実態として汚れたものの一部は可燃ごみに混入されるケースや洗浄しないままプラスチックごみとして排出されるケースもあると考えられたためです。

プラスチックごみとして収集された製品プラスチック類は、平成 24 年度のごみ質調査結果より、プラスチックごみの 32.65% (964t/年) と推計され、この内訳 (きれいなもの・汚れたもの) は、平成 24 年度のプラスチックごみの処理実績等からプラスチックごみ全

体の 1%にあたる 30t/年が汚れた製品プラスチック類であり、きれいな製品プラスチック類は、964t/年から 30t/年を差し引いた 934t/年としました。

表 2 - 4 ケースごとの平成 29 年度における排出量の推計結果 (t/年)

焼却への	分別	容器 つくり ない かいしゅう かいしゅう でんしゅ かいしゅ でんしゅ かいしゅ おいしゅ おいしゅ おいしゅう おいま かいしゅう おいま かいしゅう かいしゅう かいしゅう かいしゅう かいしゅう かいしゅう かいしゅう かいしゅう かいしゅう はいしゅう はいしゅう かいしゅう はいしゅう はいしゅう はいしゅう はいしゅう はいしゅう はいしゅう はいしゅう はいしゅう ないしゅう はいしゅう ないしゅう ないしゅう はいしゅう はい		製品プラス	スチック類	容器包装類	容器包装類
移行量	資源化量	きれいなもの	汚れたもの等	きれいなもの	汚れたもの等	ペットボトル	白色トレイ
		1, 392	596	934	30	362	38
3, 352	0	焼却発電	焼却発電	焼却発電	焼却発電	焼却発電	焼却発電
2, 952	400	焼却発電	焼却発電	焼却発電	焼却発電	素材利用	素材利用
1, 560	1, 792	素材利用	焼却発電	焼却発電	焼却発電	素材利用	素材利用
626	2, 726	素材利用	焼却発電	熱利用	焼却発電	素材利用	素材利用
964	2, 388	素材利用	素材利用	焼却発電	焼却発電	素材利用	素材利用
30	3, 322	素材利用	素材利用	熱利用	焼却発電	素材利用	素材利用
0	3, 352	素材利用	素材利用	熱利用	熱利用	素材利用	素材利用

2. 3. 2 定性評価の結果

(1)分別のわかり易さに関する評価

表2-5 分別のわかり易さに関する評価結果

1	4 7	双と 5 万州の行が、7 勿とに戻する計画和未	= 17./ 33
□ みを焼却対象とするため、分別は最もわかりやすい。	ケース	評価内容	評価
***	1		0
②	·		
 ▼ プラスチックごみは可燃ごみに入れることになるため、分別はわかりやすい。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、きれいな容器包装類(リサイクルマークの付いたもの)のみを選んで分別すればよく、比較的わかりやすいが、製品プラスチック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、きれいな容器包装類(リサイクルマークの付いたもの)と製品プラスチック類を分別すればよく、きれいか汚れているかの観点のみで分別できるため非常に分かりやすい。また、現行の分別区分と本質的には同じ(汚れたプラスチックごみは洗浄せず可燃ごみとして排出することを明文化)であり、分別内容に対する混乱は生じない。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ ブラスチックごみについては、汚れに構わず容器包装類(リサイクルマークの付いたもの)のみを選んで分別すればよいが、製品プラスチック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ◆ ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 			
 ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 プラスチックごみについては、きれいな容器包装類(リサイクルマークの付いたもの)のみを選んで分別すればよく、比較的わかりやすいが、製品プラスチック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ブラスチックごみについては、きれいな容器包装類(リサイクルマークの付いたもの)と製品プラスチック類を分別すればよく、きれいが汚れているかの観点のみで分別できるため非常に分かりやすい。また、現行の分別区分と本質的には同じ(汚れたプラスチックごみは洗浄せず可燃ごみとして排出することを明文化)であり、分別内容に対する混乱は生じない。 ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 プラスチックごみについては、汚れに構わず容器包装類(パットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 プラスチックが自己とに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 	2	ることから、分別はわかりやすい。	0
ることから、分別はわかりやすい。		◆ プラスチックごみは可燃ごみに入れることになるため、分別はわかりやすい。	
 プラスチックごみについては、きれいな容器包装類(リサイクルマークの付いたもの)のみを選んで分別すればよく、比較的わかりやすいが、製品プラスチック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。きれいな容器包装類(リサイクルマークの付いたもの)と製品プラスチック類を分別すればよく、きれいか汚れているかの観点のみで分別できるため非常に分かりやすい。また、現行の分別区分と本質的には同じ(汚れたプラスチックごみは洗浄せず可燃ごみとして排出することを明文化)であり、分別内容に対する混乱は生じない。 ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 プラスチックごみについては、汚れに構わず容器包装類(リサイクルマークの付いたもの)のみを選んで分別すればよいが、製品プラスチック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 		◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行ってい	
 たもの)のみを選んで分別すればよく、比較的わかりやすいが、製品プラスチック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、きれいな容器包装類(リサイクルマークの付いたもの)と製品プラスチック類を分別すればよく、きれいか汚れているかの観点のみで分別できるため非常に分かりやすい。また、現行の分別区分と本質的には同じ(汚れたプラスチックごみは洗浄せず可燃ごみとして排出することを明文化)であり、分別内容に対する混乱は生じない。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れに構わず容器包装類(リサイクルマークの付いたもの)のみを選んで分別すればよいが、製品プラスチック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 			
たもの)のみを選んで分別すればよく、比較的わかりやすいが、製品プラスチック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、きれいな容器包装類(リサイクルマークの付いたもの)と製品プラスチック類を分別すればよく、きれいか汚れているかの観点のみで分別できるため非常に分かりやすい。また、現行の分別区分と本質的には同じ(汚れたプラスチックごみは洗浄せず可燃ごみとして排出することを明文化)であり、分別内容に対する混乱は生じない。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れに構わず容器包装類(リサイクルマークの付いたもの)のみを選んで分別すればよいが、製品プラスチック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。	2	◆ プラスチックごみについては、きれいな容器包装類(リサイクルマークの付い	٨
するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、きれいな容器包装類(リサイクルマークの付いたもの)と製品プラスチック類を分別すればよく、きれいか汚れているかの観点のみで分別できるため非常に分かりやすい。また、現行の分別区分と本質的には同じ(汚れたプラスチックごみは洗浄せず可燃ごみとして排出することを明文化)であり、分別内容に対する混乱は生じない。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れに構わず容器包装類(リサイクルマークの付いたもの)のみを選んで分別すればよいが、製品プラステック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。	3	たもの)のみを選んで分別すればよく、比較的わかりやすいが、製品プラスチ	Δ
 ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 プラスチックごみについては、きれいな容器包装類(リサイクルマークの付いたもの)と製品プラスチック類を分別すればよく、きれいか汚れているかの観点のみで分別できるため非常に分かりやすい。また、現行の分別区分と本質的には同じ(汚れたプラスチックごみは洗浄せず可燃ごみとして排出することを明文化)であり、分別内容に対する混乱は生じない。 ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 プラスチックごみについては、汚れに構わず容器包装類(リサイクルマークの付いたもの)のみを選んで分別すればよいが、製品プラスチック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 		ック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対	
ることから、分別はわかりやすい。 プラスチックごみについては、きれいな容器包装類(リサイクルマークの付いたもの)と製品プラスチック類を分別すればよく、きれいか汚れているかの観点のみで分別できるため非常に分かりやすい。また、現行の分別区分と本質的には同じ(汚れたプラスチックごみは洗浄せず可燃ごみとして排出することを明文化)であり、分別内容に対する混乱は生じない。 ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 プラスチックごみについては、汚れに構わず容器包装類(リサイクルマークの付いたもの)のみを選んで分別すればよいが、製品プラスチック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。		するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。	
◆ プラスチックごみについては、きれいな容器包装類(リサイクルマークの付いたもの)と製品プラスチック類を分別すればよく、きれいか汚れているかの観点のみで分別できるため非常に分かりやすい。また、現行の分別区分と本質的には同じ(汚れたプラスチックごみは洗浄せず可燃ごみとして排出することを明文化)であり、分別内容に対する混乱は生じない。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れに構わず容器包装類(リサイクルマークの付いたもの)のみを選んで分別すればよいが、製品プラスチック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。		◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行ってい	
 たもの)と製品プラスチック類を分別すればよく、きれいか汚れているかの観点のみで分別できるため非常に分かりやすい。また、現行の分別区分と本質的には同じ(汚れたプラスチックごみは洗浄せず可燃ごみとして排出することを明文化)であり、分別内容に対する混乱は生じない。 ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 プラスチックごみについては、汚れに構わず容器包装類(リサイクルマークの付いたもの)のみを選んで分別すればよいが、製品プラスチック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 		ることから、分別はわかりやすい。	
点のみで分別できるため非常に分かりやすい。また、現行の分別区分と本質的には同じ(汚れたプラスチックごみは洗浄せず可燃ごみとして排出することを明文化)であり、分別内容に対する混乱は生じない。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れに構わず容器包装類(リサイクルマークの付いたもの)のみを選んで分別すればよいが、製品プラスチック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。		◆ プラスチックごみについては、きれいな容器包装類(リサイクルマークの付い	
には同じ (汚れたプラスチックごみは洗浄せず可燃ごみとして排出することを明文化) であり、分別内容に対する混乱は生じない。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れに構わず容器包装類 (リサイクルマークの付いたもの) のみを選んで分別すればよいが、製品プラスチック類と容器包装類 (ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れることとなり、それ以外の容器包装類 (ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。	4	たもの)と製品プラスチック類を分別すればよく、きれいか汚れているかの観	0
明文化)であり、分別内容に対する混乱は生じない。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れに構わず容器包装類(リサイクルマークの付いたもの)のみを選んで分別すればよいが、製品プラスチック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。		点のみで分別できるため非常に分かりやすい。また、現行の分別区分と本質的	
 ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 プラスチックごみについては、汚れに構わず容器包装類(リサイクルマークの付いたもの)のみを選んで分別すればよいが、製品プラスチック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 		には同じ(汚れたプラスチックごみは洗浄せず可燃ごみとして排出することを	
ることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れに構わず容器包装類(リサイクルマークの付いたもの)のみを選んで分別すればよいが、製品プラスチック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。		明文化)であり、分別内容に対する混乱は生じない。	
◆ プラスチックごみについては、汚れに構わず容器包装類(リサイクルマークの付いたもの)のみを選んで分別すればよいが、製品プラスチック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。		◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行ってい	
付いたもの)のみを選んで分別すればよいが、製品プラスチック類と容器包装類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。		ることから、分別はわかりやすい。	
付いたもの)のみを選んで分別すればよいが、製品フラスチック類と容器包装 類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさ や、分別内容の変更に伴い、混乱が生じる可能性がある。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行ってい ることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れ ることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く) やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内 容の変更に伴い、混乱が生じる可能性がある。	_	◆ プラスチックごみについては、汚れに構わず容器包装類(リサイクルマークの	
や、分別内容の変更に伴い、混乱が生じる可能性がある。 ◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。	5	付いたもの)のみを選んで分別すればよいが、製品プラスチック類と容器包装	Δ
◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行っていることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。		類(ペットボトル及び白色トレイを除く)を分けることに対するわかりにくさ	
ることから、分別はわかりやすい。 ◆ プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。		や、分別内容の変更に伴い、混乱が生じる可能性がある。	
◆ プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内容の変更に伴い、混乱が生じる可能性がある。		◆ ペットボトル及び白色トレイは形状的にわかりやすく、現在も分別を行ってい	
6 ることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く) やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内 容の変更に伴い、混乱が生じる可能性がある。		ることから、分別はわかりやすい。	
ることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く) やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内 容の変更に伴い、混乱が生じる可能性がある。	6	◆ プラスチックごみについては、汚れた製品プラスチック類のみ可燃ごみに入れ	_
容の変更に伴い、混乱が生じる可能性がある。	0	ることとなり、それ以外の容器包装類(ペットボトル及び白色トレイを除く)	Δ
		やきれいな製品プラスチック類を分けることに対するわかりにくさや、分別内	
7 ◆ 住民に定着した現行の分別区分であるため、特に問題はない。 ◎		容の変更に伴い、混乱が生じる可能性がある。	
	7	◆ 住民に定着した現行の分別区分であるため、特に問題はない。	0

(2) 家庭内での保管に関する評価

表2-6 家庭内での保管に関する評価結果

ケース	評価内容	評価
1	◆ 分別しているプラスチックごみ、ペットボトル、白色トレイの3種類を可燃 ごみとするため、保管期間は短くなる。 ◆ 廃プラスチックに関する保管用の袋・容器は1種類のみでよい。	0
2	◆ ペットボトル、白色トレイの2種類は、これまで同様の保管が必要となる。◆ プラスチックごみは可燃ごみとして排出するため、保管期間は短くなる。◆ 廃プラスチックに関する保管用の袋・容器は3種類必要となる。	0
3	 ペットボトル、白色トレイの2種類は、これまで同様の保管が必要となる。 プラスチックごみは、きれいな容器包装類(ペットボトル及び白色トレイを除く)のみを分別収集することとなるため、保管期間は最も長くなる。 廃プラスチックに関する保管用の袋・容器は4種類必要となる。 	Δ
4	◆ ペットボトル、白色トレイの2種類は、これまで同様の保管が必要となる。 ◆ プラスチックごみは、きれいな容器包装類(ペットボトル及び白色トレイを除く)ときれいな製品プラスチック類を分別収集することとなるため、現状(ケース7)と比較すると保管期間はやや長くなる。 ◆ 廃プラスチックに関する保管用の袋・容器は4種類必要となる。	Δ
5	◆ ペットボトル、白色トレイの2種類は、これまで同様の保管が必要となる。 ◆ プラスチックごみは、全ての容器包装類(ペットボトル及び白色トレイを除く)を分別収集することとなるため、ケース3についで保管期間は長くなる。 ◆ 廃プラスチックに関する保管用の袋・容器は4種類必要となる。	Δ
6	ペットボトル、白色トレイの2種類は、これまで同様の保管が必要となる。プラスチックごみは、汚れた製品プラスチック類のみを可燃ごみとして排出するため、保管期間は現状(ケース7)と同程度となる。廃プラスチックに関する保管用の袋・容器は4種類必要となる。	Δ
7	◆ ペットボトル、白色トレイの2種類は、これまで同様の保管が必要となる。◆ プラスチックごみは、これまで同様の保管期間が必要となる。◆ 廃プラスチックに関する保管用の袋・容器は4種類必要となる。	Δ

(3) 排出の負担に関する評価

表2-7 排出の負担に関する評価結果

ケース	評価内容	評価
1	◆ 分別種類が少なく、分別の手間が最もかからない。 ◆ 全ての廃プラスチック類を可燃ごみとするため、可燃ごみの有料指定袋の利 用枚数が増加することにより、金銭的負担は最も増加する。(可燃ごみの有 料指定袋はプラスチックごみの有料指定袋の倍額)	0
2	 ペットボトル、白色トレイは、これまでと同様のコンテナ収集となる。 プラスチックごみを分類する手間がかからない。 プラスチックごみを可燃ごみとして排出するため、可燃ごみの有料指定袋の利用枚数が増加することにより、金銭的負担は増加するが、ケース1ほど大きくない。 	0
3	 ペットボトル、白色トレイは、これまでと同様のコンテナ収集となる。 プラスチックごみは、きれいな容器包装類(ペットボトル及び白色トレイを除く)のみを分別するため、分別の手間がかかる。 汚れた容器包装類(ペットボトル及び白色トレイを除く)や全ての製品プラスチック類を可燃ごみとして排出するため、可燃ごみの有料指定袋の利用枚数が増加するが、金銭的負担の増加はケース1やケース2ほど大きくない。 	0
4	 ペットボトル、白色トレイは、これまでと同様のコンテナ収集となる。 プラスチックごみは、きれいな容器包装類(ペットボトル及び白色トレイを除く)ときれいな製品プラスチック類となるため、汚れた容器包装類(ペットボトル及び白色トレイを除く)や汚れた製品プラスチック類を排除する手間がかかる。 汚れた容器包装類(ペットボトル及び白色トレイを除く)と汚れた製品プラスチック類を可燃ごみとして排出するため、可燃ごみの有料指定袋の利用枚数は若干増加するが、金銭的負担はケース1、2、3ほど大きくない。 	0

5	 ペットボトル、白色トレイは、これまでと同様のコンテナ収集となる。 容器包装類(ペットボトル及び白色トレイを除く)と製品プラスチック類に分別するため、分別の手間がかかる。 汚れた容器包装類(ペットボトル及び白色トレイを除く)の排出に際して、洗浄作業が必要となる。 	Δ
6	 ペットボトル、白色トレイは、これまでと同様のコンテナ収集となる。 製品プラスチック類をきれいな製品プラスチック類と汚れ製品プラスチック類に分別するため、分別の手間がかかる。 汚れた容器包装類(ペットボトル及び白色トレイを除く)の排出に際して、洗浄作業が必要となる。 	Δ
7	◆ ペットボトル、白色トレイは、これまでと同様のコンテナ収集となる。◆ 分別の手間はこれまでと同様となる。◆ 汚れた容器包装類(ペットボトル及び白色トレイを除く)と汚れた製品プラスチック類の排出に際して、洗浄作業が必要となる。	Δ

(4)集積場所の管理に関する評価

表2-8 集積場所の管理に関する評価結果

	表2-8 集積場所の管理に関する評価結果	
ケース	評価内容	評価
1	◆ これまで分別しているプラスチックごみ、ペットボトル、白色トレイの3種類を可燃ごみとして排出するため、適正分別の指導を行う必要が減り、集積場所の管理は最も容易となる。	©
2	◆ ペットボトル、白色トレイについては今までどおりの管理が必要となる。◆ プラスチックごみを可燃ごみとして排出するため、適正分別の指導を行う分別区分が減少し、集積場所の管理は容易となる。	0
3	 ペットボトル、白色トレイについては今までどおりの管理が必要となる。 集積場所において、きれいな容器包装類(ペットボトル及び白色トレイを除く)が、プラスチックごみとして適正に排出されているかの管理が必要となる。 プラスチックごみから出る臭気や腐敗の恐れは少なく、管理は容易となる。 プラスチックごみにきれいな容器包装類(ペットボトル及び白色トレイを除く)以外のごみが混入する可能性が高く、その場合、ごみ収集の際に取り残されることとなる。その際は、再度、汚れた容器包装類や製品プラスチック類を取り除く手間が生じる。 	0
4	◆ ペットボトル、白色トレイについては今までどおりの管理が必要となる。 ◆ 集積場所において、きれいな容器包装類(ペットボトル及び白色トレイを除く)や、きれいな製品プラスチック類がプラスチックごみとして適正に排出されているかの管理が必要となる。 ◆ プラスチックごみから出る臭気や腐敗の恐れは少なく、管理は容易となる。 ◆ プラスチックごみにきれいな容器包装類(ペットボトル及び白色トレイを除く)やきれいな製品プラスチック類以外のごみが混入する可能性があり、その場合、ごみ収集の際に取り残されることとなる。その際は、再度、汚れた容器包装類や汚れた製品プラスチック類を取り除く手間が出るが、ケース3に比べ容易である。	0
5	 ペットボトル、白色トレイについて今までどおりの管理が必要となる。 集積場所において、容器包装類(ペットボトル及び白色トレイを除く)がプラスチックごみとして適正に排出されているかの管理が必要となる。 汚れた容器包装類(ペットボトル及び白色トレイを除く)は洗浄した上でプラスチックごみとして排出されるが、汚れが残ったままのものが排出される可能性があり、臭気や腐敗の恐れがある。 プラスチックごみに汚れた容器包装類(ペットボトル及び白色トレイを除く)や製品プラスチック類のごみが混入する可能性があり、その場合、ごみ収集の際に取り残されることとなる。その際は、再度、汚れた容器包装類を洗って排出する。併せて、製品プラスチック類を取り除く手間が増える。 	Δ
6	◆ ペットボトル、白色トレイについて今までどおりの管理が必要となる。 ◆ 集積場所において、容器包装類(ペットボトル及び白色トレイを除く)ときれいな製品プラスチック類がプラスチックごみとして適正に排出されているかの管理が必要となる。	Δ

	◆ 汚れた容器包装類(ペットボトル及び白色トレイを除く)は洗浄した上でプラスチックごみとして排出されるが、汚れが残ったままのものが排出される可能性があり、臭気や腐敗の恐れがある。	
	◆ プラスチックごみに汚れた容器包装類 (ペットボトル及び白色トレイを除く)や汚れた製品プラスチック類のごみが混入する可能性があり、その場合、ごみ収集の際に取り残されることとなる。その際は、再度、汚れた容器包装	
	類を洗って排出する。併せて、汚れた製品プラスチック類を取り除く手間が 増える。	
	◆ これまでと同様の分別区分であるため、これまで同様の管理が必要となる。	
	◆ 汚れた容器包装類 (ペットボトル及び白色トレイを除く) と汚れた製品プラ	
	スチック類は洗浄した上でプラスチックごみとして排出されるが、汚れが残ったままのものが排出される可能性があり、臭気や腐敗の恐れがある。	
7	◆ プラスチックごみに汚れた容器包装類(ペットボトル及び白色トレイを除	Δ
	く)や汚れた製品プラスチック類のごみが混入ことがあり、その場合、ごみ	
	収集の際に取り残されることとなる。その際は、再度、汚れた容器包装類や	
	汚れた製品プラスチック類を洗って排出する必要があり、その作業を当番制	
	で行っている自治会等にとっては負担となっている。	

(5) 環境保全への住民理解に関する評価

表2-9 環境保全への住民理解に関する評価結果

	表2-9 環境保全への住民理解に関する評価結果	
ケース	評価内容	評価
	◆ 分別しているプラスチックごみ、ペットボトル、白色トレイの3種類を可燃ごみ	
1	として排出するが、新施設は、プラスチック類を燃やしてもダイオキシン類対策	0
'	が万全であり、環境への影響が少ない等について、住民に理解されるよう説明を	
	する必要がある。	
	◆ ペットボトル、白色トレイは、これまでと同様の分別であるため、住民への説明	
	は不要である。	_
2	◆ プラスチックごみについては、ケース1と同様に新施設は、プラスチック類を燃	0
	やしてもダイオキシン類対策が万全であり、環境への影響が少ない等について、	
	住民に理解されるよう説明をする必要がある。	
	◆ ペットボトル、白色トレイはこれまでと同様の分別であるため、住民への説明は	
	不要である。	
	◆ プラスチックごみはきれいな容器包装類(ペットボトル及び白色トレイを除く)	
	のみとなるため、適正分別の重要性や分別方法が、住民に理解して頂けるよう説	
	明をする必要がある。 - 本れいな容器包括数以外については、ケース1k目様に新佐乳は、プラスエック	
3	◆ きれいな容器包装類以外については、ケース1と同様に新施設は、プラスチック	0
	類を燃やしてもダイオキシン類対策が万全であり、環境への影響が少ない等につ いて、住民に理解されるよう説明をする必要がある。	
	□ これまでのように汚れた容器包装類(ペットボトル及び白色トレイを除く)を水	
	▼ これまでのように汚れた谷品已表現(ヘッドホトル及の白色ドレイを除く)をホ 道水で洗浄する必要がないため、下水処理場に対する負荷や集積場所での洗浄作	
	量がでルディる必要がないため、下水処理場に対する負荷で業債場所でのルディ 業に伴う公共用水域への汚染の低減に繋がる。そういう点では住民への理解は得	
	また。 おい たい ない ない ない ない ない ない な	
	◆ ペットボトル、白色トレイは、これまでと同様の分別であるため、住民への説明	
	は不要である。	
	◆ プラスチックごみはきれいな容器包装類(ペットボトル及び白色トレイを除く)	
	やきれいな製品プラスチック類のみとなるため、適正分別の重要性や分別方法	
	が、住民に理解して頂けるよう説明をする必要がある。	
4	◆ 汚れたプラスチックごみについては、ケース1と同様に新施設は、プラスチック	0
	類を燃やしてもダイオキシン類対策が万全であり、環境への影響が少ない等につ	
	いて、住民に理解されるよう説明をする必要がある。	
	◆ ケース3と同様、汚れたプラスチックごみを水道水で洗浄する必要がないため、	
	下水処理場に対する負荷や集積場所での洗浄作業に伴う公共用水域への汚染の	
	低減に繋がる。そういう点では住民への理解は得られやすい。	
	◆ ペットボトル、白色トレイは、これまでと同様の分別であるため、住民への説明	
	は不要である。	
	◆ プラスチックごみは容器包装類 (ペットボトル及び白色トレイを除く) のみとな	
	るため、適正分別の重要性や分別方法が、住民に理解して頂けるよう説明をする	
	必要がある。	
5	◆ 製品プラスチック類については、ケース 1 と同様に新施設は、プラスチック類を	Δ
	燃やしてもダイオキシン類対策が万全であり、環境への影響が少ない等につい	
	て、住民に理解されるよう説明をする必要がある。	
	◆ 汚れた容器包装類(ペットボトル及び白色トレイを除く)はこれまで通り水道水	
	で洗浄した上で排出する必要があり、それにより下水処理場に対する負荷増大や	
	集積場所で行う洗浄作業にが、公共用水域への汚染へと繋がることとなることな	
<u> </u>	どについて、住民に知って頂く必要がある。 ◆ ペットボトル、白色トレイは、これまでと同様の分別であるため、住民への説明	
	◆ ペットホトル、日色トレイは、これまでと同様の分別であるため、住民への説明 は不要である。	
	★ プラスチックごみは容器包装類(ペットボトル及び白色トレイを除く)と、きれ	
	▼ フラステックこのは谷番 2表類 (ペットボトル及び自己トレイを除く) と、され いな製品プラスチック類のみとなるため、適正分別の重要性や分別方法が、住民	
	に理解して頂けるよう説明をする必要がある。	
	◆ 容器包装類(ペットボトル及び白色トレイを除く)は汚れの有無にかかわらずプ	
6	ラスチックごみとして排出する(汚れたものは要洗浄)こととなるが、製品プラ	Δ
	スチック類はきれいなもののみを対象とすることに対して理由が必要となる。	
	◆ 汚れた容器包装類(ペットボトル及び白色トレイを除く)はこれまで通り水道水	
	で洗浄した上で排出する必要があり、それにより下水処理場に対する負荷増大や	
	集積場所で行う洗浄作業にが、公共用水域への汚染へと繋がることとなることな	
	どについて、住民に知って頂く必要がある。	
	◆ これまでと同様の分別区分であるため、環境保全と処理対象物の関連に関する議	
	論は少ない。	
7	◆ 汚れた容器包装類(ペットボトル及び白色トレイを除く)や汚れた製品プラスチ	
'	ック類はこれまで通り水道水で洗浄した上で排出する必要があり、それにより下	0
	水処理場に対する負荷増大や集積場所で行う洗浄作業が、公共用水域への汚染へ	
	と繋がることとなることなどについて、住民に知って頂く必要がある。	

(6)環境意識向上に関する評価

表2-10 環境意識向上に関する評価結果

	表2-10 環境意識向上に関する評価結果	
ケース	評価内容	評価
	◆ これまで分別しているプラスチックごみ、ペットボトル、白色トレイの3種類を	
	可燃ごみとして排出するため、「ごみの分別」という観点から見れば、環境意識	
	が大幅に希薄化する要素がある。	
1	◆ また、分別の意識が希薄化することにより、ごみの減量化への意識も希薄化する	Δ
	可能性もあり、可燃ごみの排出量が増加する要素となる。	
	◆ 一方で、本施設では焼却による発電を行う計画としているため、プラスチック類	
	は発電用の資源であるということを、新たに啓発していく必要がある。	
	◆ ペットボトル、白色トレイの2種類は、これまで同様の環境意識の効果が期待で	
	きる。	
	◆ これまで分別しているプラスチックごみを可燃ごみとして排出するため、「ごみ	
	の分別」という観点から見れば、環境意識が希薄化する要素がある。	
2	◆ また、ケース 1 と同様に分別の意識の希薄化が、可燃ごみの排出量の増加要素と	Δ
	なる可能性がある。	
	◆ ケース 1 と同様、本施設では焼却による発電を行う計画としているため、プラス	
	チック類は発電用の資源であるということを、新たに啓発していく必要がある。	
	◆ プラスチックごみの分別内容が異なるのみで、基本的な3種類の分別区分は変わ	
	▼	
	● これまで分別しているプラスチックごみのうち、きれいな容器包装類(ペットボール・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
0	トル及び白色トレイを除く)以外は、可燃ごみとして排出するため、「ごみの分別」、トルス制をから見れば、環境会談はから会議したる要素がある。	
3	別」という観点から見れば、環境意識はやや希薄となる要素がある。	0
	◆ また、ケース1と同様に分別の意識の希薄化が、可燃ごみ排出量の増加要素とな	
	る可能性がある。	
	◆ ケース1と同様、本施設では焼却による発電を行う計画としているため、プラス	
	チック類は発電用の資源であるということを、新たに啓発していく必要がある。	
	◆ プラスチックごみの分別内容が異なるのみで、基本的な3種類の分別区分(ペッ	
	トボトル、白トレイ、廃プラスチック)は変わらないことから、これまでと同様	
	の環境意識の効果が期待できる。	
4	◆ これまで分別しているプラスチックごみのうち、汚れたものを可燃ごみとして排	0
	出するだけであり、「ごみの分別」という観点から見れば、環境意識は希薄化し	
	ないと考えられる。	
	◆ ケース 1 と同様、本施設では焼却による発電を行う計画としているため、プラス	
	チック類は発電用の資源であるということを、新たに啓発していく必要がある。	
	◆ プラスチックごみの分別内容が異なるのみで、基本的な3種類の分別区分(ペッ	
	トボトル、白トレイ、廃プラスチック)は変わらないことから、これまでと同様	
	の環境意識の効果が期待できる。	
	┃◆ これまで分別しているプラスチックごみのうち、製品プラスチック類を可燃ごみ	
5	とするため、「ごみの分別」という観点から見れば、環境意識はやや希薄となる	0
5	要素がある。	O
	◆ また、ケース1と同様に分別の意識の希薄化が、可燃ごみ排出量の増加要素とな	
	る可能性がある。	
	◆ ケース1と同様、本施設では焼却による発電を行う計画としているため、プラス	
	チック類は発電用の資源であるということを、新たに啓発していく必要がある。	
	◆ プラスチックごみの分別内容が異なるのみで、基本的な3種類の分別区分(ペッ)	
	トボトル、白トレイ、廃プラスチック)は変わらないことから、これまでと同様	
	の環境意識の効果が期待できる。	
	◆ これまで分別しているプラスチックごみのうち、汚れた製品プラスチック類のみ	
6	を可燃ごみとして排出するだけであり、「ごみの分別」という観点から見れば、	0
	環境意識は希薄化しないと考えられる。	
	◆ ケース 1 と同様に、本施設では焼却による発電を行う計画としているため、プラ	
	スチック類は発電用の資源であるということを、新たに啓発していく必要があ	
	る。	
7	きる。	0
		L

2. 3. 3 定量評価(経済性)の結果

表 2-11 定量評価(経済性)に関する評価結果

	項目	1		単位	ケース 1	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	ケースフ
	収集運搬量	可燃	ごみ	t/年	37, 190	36, 790	35, 398	34, 464	34, 802	33, 868	33, 838
		プラ	スチック	t/年	_	_	1, 392	2, 326	1, 988	2, 922	2, 952
		ペッ	トボトル	t/年	-	362	362	362	362	362	362
		白色	トレイ	t/年	_	38	38	38	38	38	38
ご	処理対象物	可燃	ごみ	t/年	57, 899	57, 899	57, 899	57, 899	57, 899	57, 899	57, 899
み		プラ	スチック	t/年	2, 952	2, 952	1, 560	626	964	30	素材利用/熱利用
量		ペッ	トボトル	t/年	362	素材利用	素材利用	素材利用	素材利用	素材利用	素材利用
		白色	トレイ	t/年	38	素材利用	素材利用	素材利用	素材利用	素材利用	素材利用
		軽量	浅渣	t/年	827	871	871	871	871	871	871
		し渣		t/年	153	153	153	153	153	153	153
		小計		t/年	62, 231	61, 875	60, 483	59, 549	59, 887	58, 953	58, 923
	収集運搬費	可燃	ごみ分	千円/年	792, 143	783, 627	753, 977	734, 083	741, 283	721, 388	720, 749
		プラ	スチック分	千円/年	0	0	136, 416	227, 948	194, 824	286, 356	291, 658
		ペッ	トボトル	千円/年	0	35, 766	35, 766	35, 766	35, 766	35, 766	35, 766
収		白色	トレイ分	千円/年	0	3, 735	3, 735	3, 735	3, 735	3, 735	3, 735
集運		小計		千円/年	792, 143	823, 127	929, 894	1, 001, 531	975, 607	1, 047, 245	1, 051, 907
搬	プラスチック処理	里費		千円/年	0	7, 310	32, 763	49, 841	43, 661	60, 739	61, 288
処理	新施設分	維持的	管理費	千円/年	982, 313	976, 697	954, 724	939, 981	945, 316	930, 573	930, 100
コス		売電	収入	千円/年	▲ 78, 269	▲ 76, 028	▲66,041	▲ 61, 200	▲ 62,770	▲56,570	▲ 54, 665
۲			発電量	kW/年	35, 272, 922	34, 660, 733	31, 987, 200	30, 618, 700	31, 072, 222	29, 393, 000	28, 948, 733
			消費電力量	kWh/年	17, 362, 393	17, 263, 125	16, 874, 757	16, 614, 171	16, 708, 473	16, 447, 887	16, 439, 517
			売電量	kWh/年	17, 910, 529	17, 397, 608	15, 112, 443	14, 004, 529	14, 363, 749	12, 945, 113	12, 509, 216
	収集運搬・処理コ	コスト		千円/年	1, 696, 187	1, 731, 106	1, 851, 340	1, 930, 153	1, 901, 814	1, 981, 987	1, 988, 630
	15年間の収集運搬	投・処	理コスト	億円	254	260	278	290	285	297	298
	施設規	見模		t/日	259	257	252	249	250	247	246
建	设費(@5千万円/t、実	質負担	!額は4割程度)	億円	130	129	126	125	125	124	123
	15年間の累	ー 計コ <i>フ</i>	K F	億円	384	389	404	415	410	421	421

参考資料 「廃プラスチック焼却処理等調査検討及び低炭素社会に向けた情報発信業務報告書」 (平成23年2月)

2. 4 まとめ

本検討では、複数のシナリオ(ケース $1\sim7$)を設定した上で比較検討を行いました。 検討結果のまとめを表2-12に示します。

この結果、定性評価については、分別の分かりやすさや管理の容易性等についてはプラスチック類を分別しないほうが有利となり、逆に環境保全に関連する住民理解や環境意識向上においては、プラスチックごみの分別資源化が有効と考えられました。定量評価(経済性)については、プラスチック類を処理対象とするほうが有利であり、特に収集運搬費削減の効果が大きいことがわかりました。

以上のことから、廃プラスチック類の取り扱いについては次のとおりとすることとしました。

- ○分別形態は、現状を基本とします。
- ○鳥取県東部圏域では、これまで循環型社会の実現に向けて、ごみの分別及びリサイク ルの推進に積極的に取り組んできており、特にプラスチックごみの分別は圏域住民に 根付いている実態があります。
- ○このことから、ペットボトルと白色トレイについては、これまでどおり分別収集とし、 焼却対象物としないこととします。
- ○ペットボトルと白色トレイ以外のプラスチックごみについては、現在、分別収集し、容器包装類は素材利用、容器包装以外のプラスチックは熱利用として資源化を行っているところです。これらを焼却対象物とし、焼却発電により、エネルギー回収することの経済的優位性は認めるものの、現在の東部圏域の分別収集が徹底されている実態を鑑みれば、本施設整備の検討にあたっては、焼却対象物としないこととします。
- ○汚れたプラスチックごみについては、これまで通り水で軽く洗って、分別排出することを基本とします。ただし、水で洗っても落ちない著しく汚れたプラスチックごみの取り扱いについては、住民負担の軽減、水環境への負荷軽減等を考慮しながら、具体的な取り扱いについて、今後、新施設供用までに構成市町と十分協議します。
- ○以上から、本施設における処理対象物として、ケース4を採用することとします。

なお、鳥取県東部圏域の循環型社会形成とごみの適正処理を進めていくためには、本事業の円滑な推進が重要ですが、このためには、本事業の前提となる分別方法を中心としたごみ処理システムについて、環境保全性・住民利便性・経済性等といった多様な視点から幅広い議論を行うことが必要です。

今後も鳥取県東部圏域にふさわしいごみ処理システムの検討を継続することが望まし いと考えます。

表 2-12 検討結果のまとめ

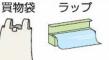
					111111111111111111111111111111111111111				
		ケース	ケース	ケース	ケース	ケース	ケース	ケース	ケース
			1	2	3	4	5	6	7
	ペット	・ボトル	V						
<i>ħ</i> П.	白色 h	・レイ	~						
理	きれし	いな容器包装プラ	V	V					
処理対象物	汚れた	-容器包装プラ	~	~	/	V			
190	きれし	いな容器包装以外のプラ	~	~	/		~		
	汚れた	-容器包装以外のプラ	~	~	/	V	V	~	
	分別σ	うわかり易さ	0	0	Δ	0	Δ	Δ	0
	家庭内	Pでの保管	0	0	Δ	Δ	Δ	Δ	Δ
定性評価	排出時	寺の負担	0	0	0	0	Δ	Δ	Δ
評価	集積場所の管理		0	0	0	0	Δ	Δ	Δ
	住民理解度		0	0	0	0	Δ	Δ	0
	環境意識向上への効果		Δ	Δ	0	0	0	0	0
	【施設規模(t/日)】※1		[259]	[257]	【252】	[249]	【250】	[247]	[246]
定	年間	収集運搬費	7. 9	8. 2	9. 3	10. 0	9. 8	10. 5	10. 5
定量評価	年間経費	プラスチック処理費	0.0	0.0	0. 3	0. 5	0. 4	0. 6	0. 6
	(億 円	焼却施設維持管理費	9.8	9.8	9. 5	9. 4	9. 5	9. 3	9. 3
· 経 注) H	買電-売電収支	-0. 8	-0.8	-0. 7	-0. 6	-0. 6	-0. 6	-0. 5
(経済性)		小計 ※2	17. 0	17. 3	18. 5	19. 3	19. 0	19. 8	19. 9
	建設費	遺(億円)※3	130	129	126	125	125	124	123
	15 年	間合計(億円)※4	384	389	404	415	410	421	421

- ※1 施設規模は、災害ごみ受入量を20t/日として算定
- ※2 四捨五入の関係から合計が合わないことがある。
- ※3 施設規模(t/日)あたり5千万円とした。なお建設費に対する自治体負担額は4割程度。
- ※4 (年間経費×15年)+建設費。なお、15年間は、あくまでも運営費を比較するための期間

添付資料2-1 プラスチックごみの出し方(例:鳥取市)

4 プラスチックごみ(週1回収集)

持出方法…「鳥取市プラスチックごみ指定袋」に入れて出してください。(有料) (指定袋以外の袋では収集しません。)


鳥取市指定袋

代 表 例

卵のパック

プラスチックのみでできているもの

プマークの入った容器包装類

出し方の注意

- ※ラップ類などで汚れたものは、軽く水洗いをし てください。
- ※マヨネーズ類の容器は、はさみ等で切ってか ら水洗いをするなど、必ず中身をきれいに取 り除いてから出してください。
- ※キャップやふたは、外してください。 金属製のキャップとリングは、外して小型破砕 ごみに出してください。
- ※ポリタンクは、中の灯油や水を抜き、ふたを外 して出してください。
- ※ポンプ式のシャンプー容器などのポンプ部分 は、外して小型破砕ごみに出してください。

※二重袋(ごみを一旦小袋に入れたものを袋に 入れて出すこと)にしないでください。

⑤ 資源ごみ(週1回収集)

持出方法…袋には入れないで資源ごみ容器に直接入れてください。

代 表 例

飲料用・食料用のビン類・缶類

出し方の注意

- ※中身を空にして、洗って出してください。
- ※資源ごみに出せる缶の大きさは、粉ミルク缶 程度までです。
- ※ラベルは、ついたままで構いません。
- ※缶は、つぶさないで出してください。
- ※缶づめのふたやプルトップ式のふたは、小型 破砕ごみに出してください。
- ※ビンのふた(キャップ)は、外してください。
- ※注ぎ口にプラスチックがついている場合は、 そのまま出してください。

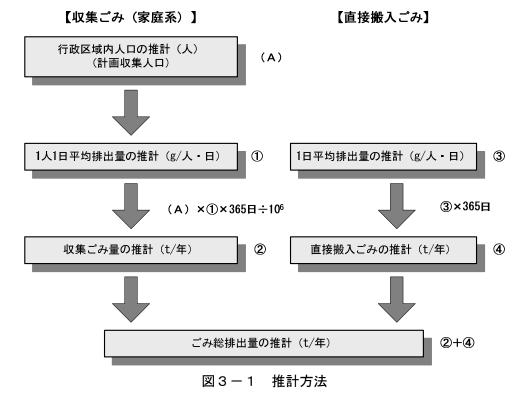
小型破砕ごみ に出してください。

3. 本施設の施設規模

施設規模については、平成 21 年度までのごみ排出量を基に 270t/日の能力があれば処理は可能としてきましたが、東部圏域の将来人口予測、各市町のごみ減量化の取組み等も関する時点整理を行い、さらに災害ごみの処理対応能力等を総合的に検討した結果、新しい可燃物処理施設の施設規模は 240t/日とします。

3. 1 はじめに

本施設の施設規模については、平成21年度までのごみ排出量をもとに、270t/日の能力があれば処理が可能としてきましたが、鳥取市が平成19年度に「ごみ処理有料化」を実施した後のごみ排出量の傾向を踏まえ、かつ鳥取県東部圏域人口の将来推計の見直し、プラスチックごみ等の処理対象物の取り扱い及び災害ごみの処理計画等の時点修正を含む再検討を行い、施設規模の再計算を行うものとしました。


3. 2 推計方法

3. 2. 1 処理対象地域

処理対象地域は、鳥取市、岩美町、智頭町、若桜町及び八頭町全域とします。

3. 2. 2 ごみ排出量の推計方法

東部圏域のごみ排出量の将来予測は、構成市町毎に図3-1に示す方法で将来予測を行いました。

20

(1) 行政区域内人口の予測方法

行政区域内人口の将来予測値は構成市町毎の過去 10 年間の実績に基づいて、一次傾向線、二次傾向線、一次指数曲線、べき曲線、対数曲線の5つの予測式を用いて将来予測を行いました。

(2) 収集ごみ量の予測方法

東部圏域の収集ごみの排出量は、図3-2に示すとおりです。

東部圏域全体の収集ごみ量及び1人1日平均排出量は、平成19年度に鳥取市がごみの有料化を開始して以降急激に減少しましたが、平成23年3月に本施設の施設規模を270t/日と設定した後の1人1日平均排出量の傾向をみると、平成22年度から平成23年度にかけては1.2%の増加、平成23年度から平成24年度にかけては0.7%の減少となっています。若干の増減はあるものの、平成22年度以降、1人1日平均排出量は横ばい傾向となっており、ごみ処理有料化に伴う減量効果は浸透したものと考えられます。ごみ処理有料化によるごみ減量効果については、数年以内に慣れ等によりごみ量が増加に転じる(リバウンドという。)ケースが知られていますが、鳥取県東部圏域においては、前述したように平成22年度以降は横ばい傾向となっており、今後の排出抑制対策による効果も見込み、収集ごみ量の予測においては、構成市町の分別品目毎の1人1日平均排出量を平成24年度実績で横ばいとすることとしました。なお、本推計の予測のイメージは図3-3に示すとおりです。

図3-2 鳥取県東部圏域の収集ごみの排出量の推移

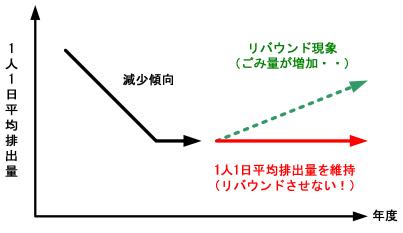


図3-3 1人1日平均排出量の将来予測のイメージ

本推計では、資源系のごみについても、図3-3に示した方法に準じて将来予測を行っています。構成市町におけるごみ減量化及び資源化への取り組み方法は表3-1のとおりですが、多くは既に継続して行っているか実施予定段階であることから、現時点において具体的に織り込んでいくことは適当ではないと考えました。

なお、岩美町においては「ミックスペーパーリサイクル推進事業」を新規で取り組んでいることから、これについては、その効果を本推計に織り込むこととしました。

「ミックスペーパーリサイクル推進事業」の実施に伴う、雑紙の回収量は、次に示す方法で想定しました。

雑紙として回収する量の予測値=岩美町の可燃ごみ量×

収集可燃ごみの組成調査結果に基づく構成比※1×回収目標

可燃ごみ量:推計値

構成比: 9.75%(=「包装紙(0.12%)」+「容器包装の紙類(5.23%)」+「雑誌・本・

その他リサイクルが可能な紙(4.40%)」)

回収率 : 可燃ごみ量に占める「包装紙」及び「容器包装の紙類」が 100%回収されるこ

とはないため、他都市の事例※2を参考に回収率を33%と設定しました。

※1 出典:鳥取県東部広域行政管理組合(平成25年3月)「ごみ質調査報告書」

※2 出典:公益財団法人廃棄物・3R研究財団 (平成24年3月)「平成23年度廃棄物系バイオマス利用

推進事業報告書(平成23年度環境省委託業務報告書)」

上記の試算で求めた雑紙回収量は、「収集可燃ごみ量」から減量化効果として差し引き、「(収集) 古紙類」に資源化効果として加算する推計としました。

表3-1(1) 構成市町におけるごみ減量化及び資源化への取り組み方法(1)

市町名	取り組み事業・施策名称	内容
	再資源化等推進事業	各団体が中心となって取り組まれている再生資源回収運動をさらに発展・推進するため、資源の回収量に応じて奨励金を交付する。
	家庭用生ごみ堆肥化容器 等購入費補助制度	コンポスト容器・段ボールコンポストなどを利用し、生ごみの 堆肥化を行う市民に対して、購入費の一部を補助する。
鳥 取 市	家庭ごみの有料指定袋制度	単にごみ処理のための費用負担を住民に求めることではなく、 処理費用の一部を直接負担していただくことにより、ごみ問題 への意識をさらに高め、ごみ減量やリサイクルの促進を目的と して実施する。
	鳥取市ごみ減量等 推進優良事業所認定制度	積極的にごみの減量や再資源化に取り組んでいる事業所を優良 事業所として認定することで、事業所のごみ減量等に関する意 識の高揚及び活動の促進を図る。また、優良認定事業所の活動 状況等を市民に周知することで、事業所のみならず市民全体の ごみ減量等の意識の啓発を図る。
	コンポスト容器、家庭用 生ごみ処理機等購入助成	補助率はすべて事業費の1/2、上限はコンポスト容器5,000円、 家庭用生ごみ処理機30,000円、水切り容器2,000円として補助 をしている。
岩美町	ミックスペーパーリサイ クル推進事業	平成25年2月に町内の全世帯(4,250世帯)へ注意書き等のシールを貼ったミックスペーパー保管ボックス(幅100mm×縦260mm×横315mm)を配布。保管ボックスにミックスペーパーをためてもらい、たまったら紙袋、封筒などに入れて雑誌と一緒に東ねて、古紙回収に出してもらう。
	破砕型生ごみ処理機設置 事業(平成25年度)	公民館などの公共施設に破砕型生ごみ処理機を設置し、公民館活動等により、破砕型生ごみ処理機を広め、町民が家庭に設置する場合には処理機本体価格の1/2(上限49,000円)を補助する。

表3-1(2) 構成市町におけるごみ減量化及び資源化への取り組み方法(2)

市町名	取り組み事業・施策名称	内容
智	くるくるプラン	生ごみを分別回収し、可燃ごみの減量化を図る。収集業者が液 肥に加工し販売している。
頭町	資源ごみ回収報奨金制度	資源ごみを回収した団体に収集量により報奨金を交付する。
_	生ごみ処理機購入費補助	生ごみ処理機を購入した者に1万円を限度して補助金を交付。
	資源ごみ回収報奨金交付 事業	資源ごみ (新聞紙、広告、雑誌、ダンボール、菓子箱等の古紙、金属、ビン類) 回収に協力する団体に対し報奨金を交付することにより、資源の再利用を推進し、ごみの減量化を図る。
	家庭用生ごみ処理機購入 費補助金交付事業	一般家庭から排出される生ごみの減量化を図るため、家庭用生 ごみ処理機等を購入しようとするものに対し、その費用の一部 を補助する。
若桜	ごみ減量化モデル地区指 定事業補助金	家庭から排出されるごみを地域で自主的に減量化及び資源化に 取り組む地域団体に対し、その経費の一部を助成することによ りごみの減量化及び地域のごみ減量意識の高揚を図る。
町	シュレッダーごみ、木く ずの再利用	役場、役場関係機関、町内の金融機関からでるシュレッダーご み及び木材加工業者から出る木くず等を牛舎の敷料として再利 用。
	インクカートリッジ里帰 りプロジェクト	家庭用の使用済みインクカートリッジの回収・リサイクル。
	家庭用生ごみ処理機モニ ター事業(平成25年度)	家庭から排出される生ごみの減量及び堆肥化による再生利用を 推進するため、家庭用生ごみ処理機の貸出を行う。
	生ごみの分別収集	回収した生ごみから液肥を造る。 (未実施)
川 頭 町	資源ごみ回収報奨金	各種団体に古紙等を回収した量に応じて報奨金を交付する。
-,	古紙回収	古紙回収を実施する集落に2カ月に1回の頻度で回収を行う。

(3) 直接搬入ごみ量の予測方法

鳥取県東部圏域の直接搬入ごみの排出量は、図3-4に示すとおりです。

鳥取県東部圏域全体の直接搬入ごみ量も、平成 19 年度以降急激に減少しましたが、平成 21~24 年度では横ばい傾向となっています。

このため、直接搬入ごみにおいても前述した収集ごみと同様に1日平均排出量を平成24 年度実績で横ばいとする予測値を採用することとしました。

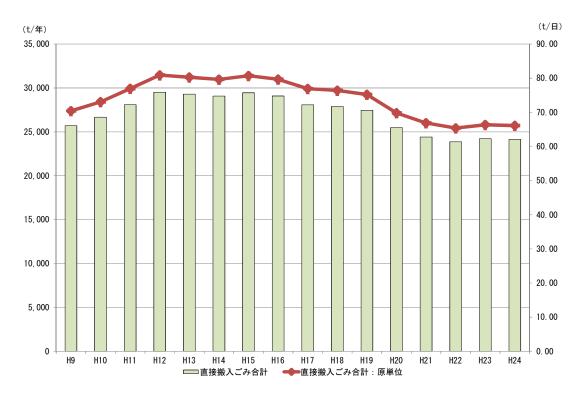


図3-4 鳥取県東部圏域の直接搬入ごみの排出量の推移

3. 3 推計結果

3. 3. 1 行政区域内人口

行政区域内人口については、構成市町における上位計画等で定めた将来人口がありますが、過去 10 年間の実績に基づき推計した本推計と比較した場合、図3-5に示すように鳥取県東部圏域全体として平成 29 年度時点で上位計画等による将来人口が本推計を約2,000 人程度上回ることがわかりました。このため、本計画では施設規模が過大とならないように、本推計による将来人口を用いることとしました。

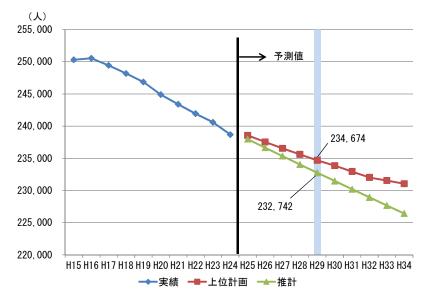


図3-5 鳥取県東部圏域全体の行政区域内人口の推計結果と上位計画の比較

構成市町毎の上位計画等に示される将来人口と本推計の比較は、表3-2に示すとおりです。

市町別にみると、鳥取市、岩美町及び智頭町では、上位計画の将来人口が本推計より多く、逆に、若桜町及び八頭町は上位計画の将来人口が本推計より少なくなっています。

表3-2 上位計画との比較

IJ	頁目	H23	H24	H25	H26	H27	H28	H29	H30	H31	H32	H33	H34
鳥取市	上位計画	106 502	195, 418	196, 256	195, 824	195, 393	194, 963	194, 534	194, 106	193, 679	193, 253	193, 253	193, 253
	推計値	190, 303	133, 410	195, 130	194, 401	193, 674	192, 950	192, 229	191, 510	190, 794	190, 081	189, 371	188,663
	差	*	1	1, 126	1, 423	1, 719	2, 013	2, 305	2, 596	2, 885	3, 172	3, 882	4, 590
岩美町	上位計画	12, 875	12, 685	12, 751	12, 631	12, 514	12, 399	12, 286	12, 175	12,066	11, 958	11, 852	11, 747
	推計値	12, 070	12, 000	12, 536	12, 380	12, 227	12, 075	11, 925	11, 777	11, 631	11, 487	11, 344	11, 203
	差	*	1	215	251	287	324	361	398	435	471	508	544
智頭町	上位計画	8. 099	7. 956	7, 836	7, 718	7, 603	7, 489		0.0200.0000.0000.0000.0000.000	7, 266	(oranomonomoranomonomonomonomonomonomonomonomonomonom	7, 049	6, 944
	推計値	0, 000	7, 500	7, 802	7, 660	7, 520	7, 382	7, 248	7, 115	6, 985	6, 858	6, 733	6, 610
	差			34	58	83	107	128	261	281	299	316	334
若桜町	上位計画	3.947	3. 837	3, 684	3, 531	3, 377	3, 286			3, 013	2, 921	2, 830	2, 739
	推計値	,	·	3, 757	3, 658	3, 562	3, 468	3, 376	3, 288	3, 201	3, 117	3, 035	2, 955
	差	*	2	-73	-127	-185	-182	-181	-184	-188	-196	-205	-216
八頭町	上位計画	19. 073	18. 767	18, 018	17, 834	17, 650	17, 467	17, 283	17, 099	16, 916	16, 732	16, 549	16, 365
	推計値	13,075	10, 707	18, 745	18, 549	18, 354	18, 159	17, 964	17, 769	17, 574	17, 378	17, 183	16, 988
	差	*	2	-727	-715	-704	-692	-681	-670	-658	-646	-634	-623
合計	上位計画	240. 577	238 663	238, 545					233, 860			231, 533	
	推計值	270, 011	200, 000	237, 970	236, 648	235, 337	234, 034	232, 742	231, 459	230, 185	228, 921	227, 666	226, 419
	差			575	890	1, 200	1, 570	1, 932	2, 401	2, 755	3, 100	3, 867	4, 629

※1:「平成24年度実績<平成25年度の上位計画の予測値」となっています。

※2: (平成23年度実績-平成24年度実績)の減少に対し、(平成24年度実績-平成25年度の上位計画の予測値)の減少が多くなっています。

3.3.2 ごみ排出量の将来推計値

以上の推計方法で求めた鳥取県東部圏域全体のごみ排出量の将来推計値は、表 3 - 3 に示すとおりです。

表3-3 鳥取県東部圏域の将来推計値

		年度		1	L		L	~			L									ı		L			۱
	2位表内人口		7 250,834	\perp	L		\perp	931	250,	532 249,	_	246	244,	243, 382		57.7	8,663 23	7 970 236,			232,			126	
	計画収集人口		.] 249, 198										244,	243, 382		_		1			232,				
	自家処理人口	7	U 1, 637	1	1	1	1	1	1			1								1		1		_	
						65 60 68	100 E								100								13.08		2
	務にな			0000000		148.56	148.92	8	0	1	0	0			95. 41			0		l			0	000000	0.65
		1 1 1 1 1 1 1 1 1 1	1 J 005.			1 688	388	781	823		7 \$		71,	400°. 9	201.4	402. 2	2 22 2								2 543
	が消滅がみ	日ごみ庫 [1/8	1] 2.48		Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, which i	4.55	2.19	2.14	2. 25 2		2		0	0.82	99.0	0.67	0.65	0.65		63 0.6	12 0.61		09.0	0.60	0.58
		/s]				18.2	8.8	8.6	9.0					3.4	2.7	2.8	2.7						2.6	2.6	2.5
							2, 216	200	1881					1 383	2,000	620 %	100						8	100	100
	1 チックバギ			4.81		6.75	7.51	7.71	8.71 9					8. 10	8. 18	8.30	8.29		62					7.96	7. 91
		ď		19.2	24.1	26.9	30.0	30.8	34.8	0	_	8	2	33.3	33.8	34. 5	34.7	_	_				1	34.8	34.7
	Toke The said ris.					17	2000	Z-4129							10 2	7.00	Targett Control							9998	900
	数部に今	13				14.7	17.1	97.1							30.01	9.21	0.30							0. IZ	5. US
						0.62	0 °07	1.12	20. T				0 41.0	2.12	50. I	6 446	2 988			4, 4	17 00 F		1.77	9 116	1.77
	海バス	4				9 93	9 58	9.25	8 67 8				6 89	6.89	6 72	6.41	6.04			95 5 9	10 5 89		5.81	5.78	5. 75
	- J 100	(c) #/== E	38 6	41.3		30.6	38.3	37.0	34.6				0.00	08.0	97.8	26.6	95.3	25.3		5.3	95.3		95.9	95.9	95.3
		が						248	200	288			7.60	388	800	8448	100 Marie	3988	100			888	100	380	448
			11					0.87						1.05	1.09	1.03	1.02						0.97	0.96	0.95
		[0]				-	-	3.5	L		L	-		4.3	4.5	4.3	4.3	L				L	4.2	4.9	4.9
				80			80					8		3	884		98							880	00
	10 × 7 ×					0.14	0.12	0.12						0.137	0.136		9, 108							0.10	0. 10
The column Column		/x]				9.0	0.5	0.5						9.0	0.6		0.5							0.4	0.4
The control of the		日本/3 番代/開告	4	91								en	3, 352	86	1000	2021	1881	3					1 200	1,886	9998
		- 日ごみ量 [t/k	1] 0.05	0.03		Name and Address of the last o		0.47		85	19 8.	46 9.4	5 9.18	8.65	7.05	5.95	5.15		olasioolesiasie olasioolesiasie	annicaismission	o construction	o construction of the cons	5.15	5. 12	5. 10
		j j		0.1			-	1.9		_	8	.1 38.	3 37.5	35.5	29.1	24.7	21.6	L					22. 4	22.4	22.4
				91	188	1881	100	1881		100		111	191	X.B	2		(5) (8)	26		-6 -6 -6 -6	88		88	**	30
				0.36		0.38	0.39	0.39		38				0.27	0, 25	0.25	0.24	0.25 0					0.24	0.24	0.24
		原単位 18/人/1	1] 1. 4	1.4	1.5	1.5	1.6	1.6	1.6	1.5	4	.6 1.	3 1.1	1.1	1.0	1.0	1.0	1.1	1.0	1.0	0 1.6	0 1.0	1.0	1.0	1.1
			908-968 [B	292 '19	82,790	64,853	211.39	681 188	1,052	388	1 28 Hills	56 84.07	242 81	88.8.78	\$6 to 188	46, 5400			¥\$				4.25 Sept. 18	42,718	F 62F
	志	一日ごみ量				177.71	175.92							130. 53	124.50								117.72		
	集ごみ)	原単位 [8/人/8	1] 649.1	673.9	687.4	709.5	703, 4						2 551.5	536.3	514.6	518.6	511.8							511.3	11.2
	日務にみ	新 公二個級					20 10							-	7										
1. 1. 1. 1. 1. 1. 1. 1.		一日ごみ最 [1/1	a] 52.27			61.18	58.99	60.58					98	57.97	9.99	57.5	IO.							57.5	57.5
1		年間ごみ 臓 (1/年)	18 			5,370	6, 187	5, 802	999		=			188	157	3,144	1, 486.7						÷	3,085	8
		- 8	12	12.12		14.71	16.87	15.07	15. 52 14	0.0000000	12		96.6	8.72	8, 56	8.61	8.46	8.46 8		8.4			8.46	8.46	8. 46
						1113	*	-																_	
						0.31	0.11	0.12			0.4							_	_						_
						1 1 1 1 1 1	183																		
				000000		0.44	0.53	0.50			10.						***************************************								-
日本語 (1 元) (1 元	\$					87 0	0 0	12 0					200	60 0	100	10 0	100		10	c	c	•	100	7 0	100
						0, 40	1.000	0.01		9 0			00.0	0.02	10.0	0.01	10.0		10.	ò	Š	ò	0.01	70° OT	70.01
			L			2, 95	2.83	2.12				Ö	7 0.02												
								8	ā	2.0															
			[E				1	0.24	0.26 0	1.21							_		-						_
						8	152	=						88	Ž	Z	8	8						8	8
				0	0	0.78	0.42	0.48		39	0.		25 0.18	0. 19		0.20	0.19	19		0			0.1	0. 19	0. 19
				00			=																		
日	Т	- 8				0.03	0.03																		
						25 00 00	00 00								20,000								01 20		
1 日	Т	1年2日 単次の歴帯	100			20				2				8	20	600	188			a 55		00	200	27 000	90
## 1		3/1] 単をパロー	1]					0.09	L	0	L	0.3	5 0.29	0.26	0.25	0.25	0.27	0.27 0	27 0.	27 0.2	L	7 0.27	0.27	0.27	0. 27
							82,043							60,663	58,622								57, 520		150
## 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			-	210.31	L		224.78	L		198			L	166. 20	160.61		0	7.2	L		L		157.59		6.58
一日						12,312	11,315								8,020										515
日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日						33, 73	31.00								21.97										0.59
日			11	01									3, 352	3, 158	2,574									1,868	098
日本語 (1 元 元 元 元 元 元 元 元 元 元 元 元 元 元 元 元 元 元														8.65	7.05	5, 95	5.15						5.	5. 12	5. 10
中国	カ・蛍光衛			132		138	1								85	16	89							88	8
中国	200		0.3	0.36		0.38	0.39	0.39							0.25	0.25	0.24		ı				0.	0. 24	0. 24
特別	* ()														25 0	98	000	20 10					0	26 0	26.0
				88,383	90,870	94,376	93, 562		×	*				72, 154	99, 400			**		*		823			712
			L	242.09		258, 56	256,17	=						197, 68	190, 14				L				184.11	L	2, 77
4期 日 2 日 2 日 2 日 2 日 2 日 2 日 2 日 2 日 2 日		1				1032. 2	1024.3	L					L		786.0								799.8		02.8
- 日子ン学 [1/4] 1466 144 13.22 15.23 15.24 14.75 14.89 14.43 14.56 14.59 14.75 14.89 14.73 14.89 14.73 13.40 12.49 11.76						5,524	5, 636								4,890		6						4, 164		HII.
						15.13	15.44		-			76			13.40								11.44		1. 32
#期間答義 [七年度] 96,482 83,481 66,586 98,188 96,880 88,188 86,880 88,188 86,880 88,188 87,288 87		/8]				60.4	61.7					2			55.4								49.7		49.7
-H-7-2 (1) 247.90 286.50 282.67 273.70 271.6 286.89 286.20 285.7 281.80 271.6 286.89 286.20 281.80 291.241 203.85 280.40 199.88 199.22 198.47 197.71 196.89 196.25 198.77		年間ごみ量 (1/年)	£] 90° 487			96, 900	99, 138			ě	96	ē.	80, 323	77, 520	74,290	74, 408	in the					11,632	71,365		828
		1/1] 単なプロー	31 9.47 9.6	0 0 0 0				ı	ı			l						l	l	١	l			١	

3. 4 災害ごみ量の推計

3. 4. 1 災害ごみの推計方法

災害ごみとごみ処理施設の処理能力の関係については、「今後の廃棄物処理施設整備の 在り方」(平成25年3月29日、中央環境審議会循環型社会部会)において「大規模な災 害が発生しても一定期間で災害ごみの処理が完了するよう、広域圏ごとに一定程度の余裕 を持った焼却施設や最終処分場の能力を維持し、代替性、多重性を確保しておくことが重 要である。」とされています。

そのため、本施設において考慮すべき大規模な災害に伴う被害想定を踏まえた災害ごみ 量の検討を行うこととしました。

災害ごみ量の検討は、想定される大震災時の被害想定シナリオに基づく方法と他施設に おける設定例を参考とする方法で行いました。

被害想定シナリオにおいては、鳥取県が策定した「鳥取県地域防災計画」において想定された「鹿野・吉岡断層」による大災害を想定しました。また、災害ごみ量の試算には、環境省(平成10年10月)「災害廃棄物対策指針」(現在、改訂中)に示されたがれき類の発生量の推計方法を行いました。

他施設における設定例については、インターネット検索により他施設の規模計画事例を 抽出し、これらにおける施設規模への災害ごみ量織り込み方法を整理しました。

【がれき類の発生量の推計方法】

推計式: $Q1 = s \times q1 \times N1$

Q1: がれき類の発生量 (t)

s:1棟当たりの平均延床面積(m²/棟)

q1:単位延床面積当たりのがれき類の発生量(t/m³)

N1:解体建築物の棟数(棟)

3. 4. 2 災害ごみの将来予測結果

(1) 平均延床面積

1棟当たりの平均延べ床面積は、総務省統計局(平成20年)「住宅・土地統計調査」の 1住宅当たり延べ床面積(鳥取県全体)が122.11m²となっていることから、この値を用いるものとします。

(2) 単位延床面積当たりのがれき類発生量

単位延べ床面積当たりのがれき類の発生量は、環境省(平成 10 年 10 月)「震災廃棄物対策指針」に示されている値を用いるものとします(表 3-4 参照)。

表3-4 単位延床面積当たりのがれき類発生量

			原単位	(t/m^2)		
項目	木	造	鉄	筋	鉄	骨
	可燃	不燃	可燃	不燃	可燃	不燃
大破	0. 1940	0. 5020	0. 1200	0. 9870	0. 0820	0. 6300
中破	0. 0970	0. 2510	0.0600	0. 4935	0.0410	0. 3150
焼失	0. 0582	0. 5020	0.0360	0. 9870	0. 0246	0. 6300

[※]表中の焼失の原単位は、千葉県市町村震災廃棄物処理計画策定指針を参考としています。

(3) 建築物被害数の想定

災害発生時に被災する建築物数は、「鳥取県地域防災計画」で示された「鹿野・吉岡断層」による建物被害予測結果を参考としています。被害予測結果は、表3-5に示すとおりと想定しました。

表3-5 建築物被害棟数

			内	訳	
項目	想定值	木造 (棟)	鉄筋 (棟)	鉄骨 (棟)	その他 (棟)
大破	2, 945	2, 241	395	303	6
中破	3, 366	2, 561	451	347	7
焼失	2, 108	1, 605	282	217	4

表3-6の試算根拠は、下記のとおりとします。

総務省統計局(平成 20 年)「住宅・土地統計調査」において、鳥取市及び八頭町の住宅の概要(表 3-6)が示されており、この構成比をベースに平成 24 年 3 月の世帯数から平成 23 年度時点の構成比を試算しました(表 3-7)。

なお、表3-7の岩美町、智頭町、若桜町の内訳については、八頭町の構成比を採用しています。この構成比で、鳥取県地域防災計画にて示された被害想定値を按分しています。

表3-6 鳥取市及び八頭町の住宅概要

			構造		
項目	木造 (棟)	防火木造 (棟)	鉄筋・鉄 骨コンクリート (棟)	鉄骨造り (棟)	その他 (棟)
自忠士	28, 840	24, 510	11, 070	8, 390	130
鳥取市	39.5%	33.6%	15. 2%	11.5%	0. 2%
八頭町	4, 440	760	220	220	0
八頭町	78. 7%	13.5%	3.9%	3. 9%	0.0%

出典:住宅·土地統計調査(平成20年) 総務省統計局

表3-7 東部圏域全体の構成比

			構造			
項目	木造 (棟)	防火木造 (棟)	鉄筋・鉄 骨コンクリート (棟)	鉄骨造り (棟)	その他 (棟)	H24.3の 世帯数
鳥取市	30, 174	25, 668	11, 612	8, 785	153	76, 392
岩美町	3, 395	582	168	168	0	4, 313
智頭町	2, 155	370	107	107	0	2, 739
若桜町	1, 174	201	58	58	0	1, 491
八頭町	4, 684	804	232	232	0	5, 952
合 計	41, 582	27, 625	12, 177	9, 350	153	90, 887
構成比		76. 1%	13.4%	10.3%	0. 2%	100.0%

(4) 災害ごみ発生量の予測

鹿野・吉岡断層による災害が発生した際の災害ごみの想定量は、表3-8に示すとおりとします。なお、災害ごみの可燃系ごみは、再資源化が可能な木屑等が含まれるため、国土交通省(平成20年)「建設リサイクル推進計画2008」における平成27年度の目標値(再資源化率80%)が達成されるものと仮定し、焼却対象となる廃棄物の量を試算し、これを3年間で処理する計画としました。

以上より、大規模災害発生を想定すると、災害ごみ処理のための余力として 20t/日 (365日平均) 程度を見込むことが適切と考えられました。

この量は、後述の本施設処理対象物量 (表 3-14) との比率において 10.5% (20/190.50 ×100) から 11.0% (20/181.44×100) となります。この割合は、他施設の事例において 3%から 10%程度とされていることと比較して過大な見込みではないものと考えられます。

表3-8 災害ごみ発生量の推計と本施設での要処理量

		発生量	(延床面積	i : 122. 11r	m ² /棟)	
項目	木造	(t)	鉄筋	(t)	鉄骨	(t)
	可燃	不燃	可燃	不燃	可燃	不燃
大破	53, 088	137, 372	5, 788	47, 606	3, 034	23, 310
中破	30, 334	78, 494	3, 304	27, 178	1, 737	13, 347
焼失	11, 406	98, 385	1, 240	33, 987	652	16, 694
合計	94, 828	314, 251	10, 332	108, 771	5, 423	53, 351
可燃系廃棄:	物の合計				110, 583	t
可燃系廃棄	物中の20%	を処理対象	象と想定		22, 117	t
3年間で処理	と想定				20	t/目

3. 4. 3 他施設における事例整理結果

他施設における施設規模に対する災害ごみの織り込み事例を表 3-14 に示しました。これによると、災害ごみ処理のための余力は処理対象物量の 3 %から 10%程度であることがわかります。ここで、平均的な余力として処理対象物量の 5 %と設定すると、本施設では、10t/日 (365 日平均) ($181.44\sim190.50\times0.05$) 程度となります。

表3-9(1) 他施設における施設規模に対する災害ごみの織り込み事例

自治体名	施設規模	災害廃棄物の見込みに関する考え方	割合
		災害廃棄物量は、施設規模に対して 5%を見込	
糸魚川市	53t/日	む(被害想定無し)	5%
		(計算) 50t/日×5%≒3t/日	
出典: <u>http://www.ci</u>	ty.itoigawa	. 1g. jp/dd. aspx?menuid=5260	
		災害廃棄物量は、2,280t/年と想定しており、	
三条市	160t/日	これを 180 日で処理する計画	約 5%
一本中	1001/ Ц	(割合) 2,280t/年÷42,200t/年(災害含む)	小り ひ 夕口
		≒5%	
出典: <u>http://www.ci</u>	ty. sanjo. ni	igata.jp/shisetsukensetsu/page00017.html	
		災害廃棄物量は、可燃ごみ及び残渣分の合計の	
		10% (3,266t) を想定しており、平常時は	
 上伊那広域連合	134t/日	1,180t/年分を最終処分場の掘り起しごみの処	約 6%
工伊加瓜线连口	134L/ 🗖	理をする計画	ポリ 0 % 0
		(割合)2,086t/年(≒3,266t/年-1,180t)÷	
		42,200t/年(災害含む)≒6%	
出典:			
http://www.valley.n	ie.jp/~kamii	ina/trash/facility_trash/shisetuseibikihonk	<u>eikaku.h</u>
<u>tml</u>			
		災害廃棄物量は、過去の自然災害を想定してお	
		り、これを2施設で等分し、2ヶ月で処理する	
久留米市	163t/日	計画	約3%
		(割合) 1,100t/年÷40,090t/年(災害含む)	
		≒3%	
出典:			
http://www.city.kur	rume. fukuoka	a. jp/1050kurashi/2100kankyougomi/3070shiset	<u>sukeikak</u>
<u>u/2012-0412-2024-16</u>	<u> 1. html</u>		
		災害廃棄物量は、施設規模に対して 10%を見込	
寝屋川市	200t/日	む(被害想定無し)	10%
		(計算) 178t/日×10%≒17.8t/日	
出典:			
http://www.city.ney	agawa.osaka	a.jp/index/soshiki/gomisisetsu/gomi-kihonke	ikaku.ht
<u>m1</u>			

表3-9(2) 他施設における施設規模に対する災害ごみの織り込み事例

自治体名	施設規模	災害廃棄物の見込みに関する考え方	割合						
今治市	174t/日	災害廃棄物量は、芸予地震での処理実績(240t)	約 3%						
		の2倍を想定し、これを3ヶ月で処理する計画							
		(割合)5t/日(≒240t×2倍÷90日)÷174t/							
		日(災害含む)≒3%							
出典: http://www.city.imabari.ehime.jp/kankyou/gomishori_kihonkeikaku/									
長野広域連合	550t/日	災害廃棄物量は、過去の台風による被害に基づ	約 8%						
		き想定しており、これを 30~60 日で処理する							
		計画							
		(割合) 43t/日 (≒1,300t÷30~60 日)÷550t/							
		日(災害含む)≒8%							
出典: http://www.area-nagano.jp/modules/contents/index.php?content_id=74									
山陽小野田市	90t/日	災害廃棄物量は、過去の大雨による被害に基づ	約 13%						
		き想定しており、これを30日で処理する計画							
		(割合) 11.66/日 (349.8t÷30 日) ≒÷90t/							
		日(災害含む)≒13%							
出典: http://www.ci	出典: http://www.city.sanyo-onoda.lg.jp/uploaded/attachment/11902.pdf								
塩谷広域行政組合	116t/日	災害廃棄物量は、栃木県地域防災計画を参考に	約 10%						
		想定しており、これを2.5年間で処理する計画							
		(割合) 8.9t/日 (≒8,100t÷ (2.5 年×365							
		日)) ÷84.85t/日(災害含む) ≒10%							
出典:			ļ						
http://www.shioyakouiki.or.jp/shisetsu/gomi_shori_data/pdf/gomikihon/gomikihon03									
<u>. pdf</u>									
野洲市	43t/日	災害廃棄物量は、一般廃棄物処理実態調査のデ	約 10%						
		ータベースを参考に、人口規模が類似した都市							
		の災害廃棄物処理量を参考に想定							
		(割合)1,141t÷11,488t(災害含む)≒10%							
出典: http://www.city.yasu.lg.jp/doc/cleancenter/files/10570.pdf									

3.5 処理対象量

本施設の処理対象量は、施設整備計画目標年度(平成 29 年度)において、表 3-10 に示すとおりとします。

表3-10 可燃物処理施設の処理対象量

Í	項目	単位	ケース 1	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	ケース 7
年間処理量	可燃ごみ	t/年	57, 899	57, 899	57, 899	57, 899	57, 899	57, 899	57, 899
	プラスチック	t/年	2, 952	2, 952	1, 560	626	964	30	_
	ペットボトル	t/年	362	_	_	_	_	_	_
	白色トレイ	t/年	38	_	_	_	_	_	_
	軽量残渣	t/年	827	871	871	871	871	871	871
	し <u>渣</u>	t/年	153	153	153	153	153	153	153
	災害ごみ	t/年	7, 372	7, 372	7, 372	7, 372	7, 372	7, 372	7, 372
	小計	t/年	69, 603	69, 247	67, 855	66, 921	67, 259	66, 325	66, 295
1日平均処理量	可燃ごみ	t/目	158. 63	158. 63	158. 63	158. 63	158. 63	158. 63	158. 63
	プラスチック	t/目	8. 09	8.09	4. 27	1. 72	2. 64	0.08	_
	ペットボトル	t/目	0. 99	_	_	_	_	_	_
	白色トレイ	t/目	0. 10	_	_	_	_	_	_
	軽量残渣	t/目	2. 27	2.39	2.39	2. 39	2. 39	2. 39	2.39
	し渣	t/目	0. 42	0. 42	0. 42	0. 42	0. 42	0.42	0. 42
	災害ごみ	t/日	10. 00	10.00	10.00	10.00	10. 00	10.00	10.00
	小計	t/日	180. 50	179. 53	175. 71	173. 16	174. 08	171.52	171. 44

3. 6 施設規模

3. 6. 1 施設規模の試算方法

本施設の施設規模は、「ごみ処理施設整備の計画設計要領 2006 改訂版」(以下「計画設計要領」という。) に示される算出方法を用いて検討するものとしました。

【施設規模】

年間日平均処理量÷実稼働率(0.767)*1÷調整稼働率(0.96)*2

【実稼働率】※1

実稼働率は、年間稼働日数を365日で除し算定する。

年間稼働日数:365日-85日(年間停止日数)=280日

年間停止日数:補修整備期間 30日

補修点検 15 日×2回

全停期間 7日

起動に要する日数 3日×3回

停止に要する日数 3日×3回

よって、実稼働率は、280 日÷365 日=0.767

【調整稼働率】※2

正常に運転される予定の日でも故障の修理、やむを得ない一時休止等のための処理能力が低下することを考慮した係数:0.96

3. 6. 2 算定結果

本施設の施設規模は、表3-11に示すとおりと試算されました。

表3-11 施設規模の計算結果

区分	小区分	単位	ケース 1	ケース 2	ケース3	ケース 4	ケース 5	ケース 6	ケース7
	収集可燃ごみ	t/日	92. 71	92. 71	92. 71	92. 71	92. 71	92. 71	92. 71
	事業系可燃ごみ	t/日	57. 47	57. 47	57. 47	57. 47	57. 47	57. 47	57. 47
年	直接搬入可燃ごみ	t/日	8. 45	8. 45	8. 45	8. 45	8. 45	8. 45	8. 45
間日	軽量残渣	t/日	2. 27	2. 39	2. 39	2. 39	2. 39	2. 39	2. 39
平	し渣	t/日	0. 42	0. 42	0. 42	0. 42	0. 42	0.42	0. 42
均加	プラスチックごみ	t/日	8. 09	8. 09	4. 27	1. 72	2. 64	0. 08	_
型 理	ペットボトル	t/日	0. 99	_	_	_	_	-	_
量	白色トレイ	t/日	0. 10	-	-	-	-	-	-
	災害ごみ(他施設事例引用)	t/日	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	合 計	t/日	180. 50	179. 52	175. 71	173. 15	174. 08	171. 52	171. 44
	施設規模	t/日	245	244	239	235	236	233	233
						П			

L 240 t /日

3. 6. 3 施設規模設定に係る他自治体の動向

平成 24 年 4 ~ 11 月時点で整備計画が進められている他自治体のごみ焼却施設の施設規模は、表 3-12 に示すとおりです。

他自治体の施設規模を、鳥取県東部圏域内の人口と同等レベルに換算した場合(施設規模・行政人口×24万人)、325t/日(最大)から192t/日(最小)の範囲で、平均は255t/日となっており、表3-12に示した施設規模と類似した規模となっています。

表3-12 他自治体の施設規模設定に関する動向

県名	自治体名	規模※	人口規模	24万人換算
栃木県	芳賀地区広域行政事務組合	143 t/日	約 15 万人	229 t/日
富山県	高岡地区広域圏事務組合	255 t/日	約 26 万人	235 t/日
石川県	小松市	120 t/日	約 11 万人	262 t/日
長野県	長野市	450 t/日	約 39 万人	277 t/日
岐阜県	岐阜鳥羽衛生施設組合	189 t/日	約 15 万人	302 t/日
静岡県	御殿場市・小山町広域行政組合	143 t/日	約 11 万人	312 t/日
	富士市	250 t/日	約 25 万人	240 t/日
愛知県	小牧岩倉衛生組合	197 t/日	約 19 万人	249 t/日
三重県	松阪市	200 t/日	約 17 万人	282 t/日
大阪府	豊中市伊丹市クリーンランド	525 t/日	約 59 万人	214 t/日
兵庫県	北但行政事務組合	174 t/日	約 13 万人	321 t/日
岡山県	津山圏域資源循環施設組合	128 t/日	約 16 万人	192 t/日
愛媛県	今治市	174 t/日	約 17 万人	246 t/日
	宇和島地区広域事務組合	120 t/日	約 13 万人	222 t/日
高知県	香南清掃組合	120 t/日	約 11 万人	262 t/日
福岡県	福岡都市圏南部環境事業組合	510 t/日	約 57 万人	215 t/日
佐賀県	佐賀県西部広域環境組合	205 t/日	約 24 万人	205 t/日
宮崎県	都城市	230 t/日	約 17 万人	325 t/日
				min 192 t/日
	合計	4,133 t/日	約 405 万人	ave 255 t/日
				max 325 t/日

4. 本施設の炉数計画

本施設の施設規模が 270t/日から 240t/日に見直しされたこと等の状況変化を踏まえ、 本施設における炉数の再検討を行った結果、従来の3炉構成から2炉構成とします。

4. 1 はじめに

ごみ焼却施設では、定期的に補修等を行う必要があり、年間を通じて順次1炉ごとに炉を止め補修を行います。補修期間においては補修を行っていない炉を使ってごみ処理を継続することが必要であり、炉数が少ないと1炉補修時の能力低下が大きく適切なごみ処理に支障が生じます。一方、炉数が多いと1炉補修時の能力低下は少ないものの建設費や点検補修費が高額となり経済的ではありません。また建設工事期間も長くなります。このため、ごみ焼却施設の炉数については、「廃棄物処理施設整備費国庫補助金交付要領の取扱いについて」(環廃対発第031215002号)において、「ごみ焼却施設の焼却炉の数については、原則として2炉又は3炉とし、経済性等に関する検討、炉の補修点検時の対応等を十分に行い決定すること。」とされています。

本施設においては、本施設が鳥取県東部圏域における唯一施設となり代替え施設がないことから、炉補修時の能力低下をできるだけ少なくする必要があると考え、これまで3炉(1炉当たり規模:90t/日)とすることとしていました。

しかしながら、このたび、施設規模が 240t/日に改定されたことから、炉数についても 経済性や補修時の対応性等について、最新の情勢を踏まえた再検討を行うこととしました。

4.2 炉数の検討方法

4. 2. 1 経済性の検討方法

経済性として施設建設費及び運営管理費について比較検討を行いました。

施設建設費については、「廃棄物処理施設建設工事等の入札・契約の手引き(環境省内閣大臣官房廃棄物・リサイクル対策部、平成18年7月)」に示される、ごみ処理施設の建設費は規模の0.6乗に比例するという「0.6乗則」を用いて検討を行いました。

「0.6 乗則」とは、化学工業プラントのコスト概算等において経験的に用いられている方法です。例えば、能力に 2 倍の差があるプラントのコストは、2 倍の差があるのではなく、 $2^{0.6}$ =1.52 の差しかないという考え方です。炉に例えると、50t/日の炉が 25 億円だとすると、100t/日の炉は 50 億円(25 億円×2)ではなく、38 億円(25 億円×1.52)であるということになります。なお、本検討では、施設建設費については検討中であることから、指数を用いた検討を行うものとしました。

運営管理費については、運営管理費に関係する代表的な要素として、エネルギー回収効率、運転人員人数、薬品数量、機械点数について定性的に比較検討しました。

4. 2. 2 炉の補修点検時の対応性の検討方法

炉の補修点検時においては処理能力が低下することから、余剰分については一時的にごみピットにて貯留することにより対応します。このため、ごみピットには、補修点検等に伴う焼却炉の休止時における一時的な必要処理能力の不足分を貯留できるだけの容量が必要となります。また、ごみの搬入量パターンによってはごみピット貯留量がなくなり炉を休止する必要が生じることがあります。このような休炉期間についてはできるだけ短いほうがよいと考えられ、本検討では稼働状況の合理性についても検討を行いました。

ここでは、以下に示す条件のもと、2 炉及び3 炉時のごみピット必要容量及び各炉の稼働状況を計算しました。

- ① ごみピット容量は、1年間の毎日のごみ搬入量を設定し、1日処理能力の不足分を貯留 させていくことにより求めました。
- ② 日搬入量は、平成23年度の神谷清掃工場の搬入実績をもとに1年間の日搬入パターンを計算し、計画年間処理量をこのパターンで按分することにより求めました。計画年間処理量は、災害ごみを含むケースと含まないケースについて設定しました。
- ③ 1 炉当たり日処理量は、定格処理能力(2 炉:120t/日、3 炉:80t/日)としました。
- ④ 炉の停止期間は、計画的な補修点検整備による停止日数(85 日/年)及びやむを得ない 一時停止期間(15日/年)を見込むものとしました。
- ⑤ 計画的な補修点検整備は、前期に1回目の補修点検(21日)、中期に補修整備(36日)、 後期に2回目の補修点検(21日)を行うこととしました。また、停止期間には起動・停止に要する6日間を含むものとしました。
- ⑥ 調整稼働率に相当する 14~15 日/年の運転停止は、年末年始休業の 4 日間、長期連続稼働時の炉内清掃期間、ピット貯留量が極端に減少した際の調整休炉の期間とします。

4. 2. 3 その他の比較要素の検討方法

その他の比較要素として、工事期間、環境負荷、都市の事例における動向について検討を行いました。

工事期間は他事例を参考に検討を行い、環境負荷は大気質への影響について大気拡散式による定性的な検討を行い、他都市の事例は環境省「廃棄物処理施設の入札・契約情報データベース(平成22年度)」等をもとに平成22年度の着工施設における施設規模と炉数の関係を整理し、傾向を考察しました。

4. 3 検討結果

4. 3. 1 経済性の検討結果

施設建設費について、3 炉構成施設(80 t /炉)と2 炉構成施設(120 t /炉)の比較計算結果を表4-1 に示しました。これによると、施設建設費は、2 炉構成施設に対して3 炉構成施設では85%程度に削減されることとなりました。

表4-1 各炉数における施設建設費の計算結果

項目	3 炉構成	2 炉構成
炉規模	80t/日	120t/日
1系列(炉)の建設費(指数)	100	127. 54 ^{**} 1
施設建設費(指数)【比率】※2	300 [100]	255 [85]

[※] 1 100 × (120/80) ^{0.6}

つぎに、運営管理費に関連する主要な要素と炉数構成の関係を表4-2に示しました。 これによると、概ねの要素で2炉が有利となりました。

表4-2 運営管理費に関連する主要な要素と炉数構成の関係

要素	3 炉構成	2 炉構成
エネルギー回収効率	2炉に比べ炉の大きさが小さい ことから、炉の体積当たり表面積 が大きく熱効率が劣る	3炉に比べ炉の大きさが大きく、炉 の体積当たり表面積が小さく熱効 率がよい
運転人員人数	メンテナンス要員は3炉の管理 を行うため、2炉の比べ1.5倍の 労力が必要となる	メンテナンス要員は2炉の管理を 行うため3炉に比べ6割程度の労 力で済む
薬品数量	理論上は2炉と同様	理論上は3炉と同様
機械点数	2炉構成の 1.5 倍の機器が必要 となる	3 炉構成の 6 割程度となる

4. 3. 2 炉の補修点検時の対応性に関する検討結果

災害廃棄物を含む年間計画処理量を処理する場合のごみピット必要容量と運転計画は、 表4-3に示すとおりとなりました。

これによると、ピット容量は、2 炉構成で 10 日分、 $7,900 \,\mathrm{m}^3$ 、3 炉構成で 7 日分、 $5,600 \,\mathrm{m}^3$ となりました。 2 炉構成の場合、ピットの有効深さを 8 mとすると、 $50 \,\mathrm{m} \times 20 \,\mathrm{m}$ のピットを確保する必要があります。2 炉構成の焼却施設の横幅は $50 \,\mathrm{m}$ から $60 \,\mathrm{m}$ 程度であり、ピットを確保するためには設備配置等の工夫が必要となりますが、配置は可能と考えられました。 3 炉構成ではピットの大きさは $35 \,\mathrm{m} \times 20 \,\mathrm{m}$ となり、問題なく配置できます。

つぎに稼働状況をみると、2 炉の場合、2 炉とも稼働する期間は 185 日、3 炉の場合、3 炉とも稼働する期間は 99 日となり、投資効果は2 炉が有利となりました。

^{※2 1}系列(炉)の建設費(指数)×炉数

表4-3 ごみピット容量の検討結果(災害ごみを含む)

	3 炉構成のケース	2 炉構成のケース		
施設規模	240 t (80 t × 3 炉)	240 t (120 t × 2 炉)		
必要貯留量	6.50日分 ≒ <u>7日分</u>	9. 19 日分≒ <u>10 日分</u>		
必安灯笛里	(1, 678 t)	(2, 370 t)		
必要ピット容量*	5, 588 m³	7,894 m³		
	3 炉運転日数:99 日	2 炉運転日数:185 日		
運転計画	2 炉運転日数:252 日	1 炉運転日数:166 日		
	全休炉日数:7日+8日	全休炉日数:7日+8日		

※0.3t/m³で計算

通常時では災害ごみは搬入されないことから、災害ごみを除く計画処理量で運転を行った場合の検討結果を表4-4に示しました。

必要となるピット容量は、2 炉、3 炉とも災害ごみ受入時より小さく、その確保は可能と考えられました。炉の稼働状況をみると、3 炉構成の場合、3 炉同時運転期間は 63 日間と約 2 か月間程度であることがわかりました。施設の性能は、平均的なごみ質時において全炉運転時で最適化されており、部分負荷運転状態(運転炉数減等)においては、ごみ1 t あたりの消費電力量や発電電力量は悪化します。災害ごみが発生しない通常状態の場合、3 炉構成では非効率な運転状態となり、施設の経済性や効率性が損なわれるおそれがあります。

表4-4 ごみピット容量の検討結果(災害廃棄物を除く)

	3 炉構成のケース	2 炉構成のケース
施設規模	240 t (80 t × 3 炉)	240 t (120 t × 2 炉)
最大貯留量	6.20日分/7日分	7.76 日分/10 日分
	3 炉運転日数:63 日	2 炉運転日数:151 日
 運転計画	2 炉運転日数:283 日	1 炉運転日数:200 日
(建物制) 四	1 炉運転日数:5日	全休炉日数 :7日+8日
	全休炉日数 :7日+8日	

4. 3. 3 その他の比較要素の検討結果

その他の比較要素として、工事期間、環境負荷、他都市の事例における動向について検討した結果を表4-5に示しました。

工事期間は2炉の場合、3炉に比べ約4か月間の短縮が可能となり、本施設整備工程に 余裕を持たせることができることがわかりました。

環境負荷は理論的には2炉、3炉とも変わりません。大気への拡散状況についても、排 ガスの突出速度、排ガス温度を同一にすれば両者の差はないことがわかりました。

他都市の事例を整理すると、250t/日程度を境に、これより小さいと2炉構成、これより大きいと3炉構成の施設が多いことがわかりました。特に3炉構成の場合、すべてが250t/日以上でした。

表4-5 その他の比較要素の検討結果

要素	3 炉構成	2 炉構成					
工事期間		設計期間、試運転期間を除き、概ね 20か月間					
環境負荷	処理を行うものや排ガス処理設備の性能は理論的には2炉、3炉とも変わらないため、排ガスによる環境負荷は両者で不変また、排ガスの拡散条件を決める排ガスの突出速度及び排ガス温度についても両者に差はない(同一とすることは可能)						
他都市の事例		\ \$					

4.3.4 結論

以上の検討結果を踏まえ、これまで3炉構成としてきたものを、2炉構成に変更するものと しました。なお、2炉構成とするためには、十分なごみの貯留容量が必要であることに留意す るものとします。

表4-6 240t/日施設における炉数構成の比較検討結果のまとめ

大項目	小項目	3 炉構成	2 炉構成			
77.71	1 炉の規模	80t/日	120t/日			
施設建設費	1系列(炉)の建設費(指数)	100	127. 54			
	施設建設費(指数)【比率】	300 [100]	255 [85]			
		2 炉に比べ炉の大きさが	3 炉に比べ炉の大きさが			
		小さいことから、炉の体	大きく、炉の体積当たり			
	エネルギー回収効率	積当たり表面積が大きく	表面積が小さく熱効率が			
		熱効率が劣る。	よい。			
		メンテナンス要員は3炉	メンテナンス要員は2炉			
運営管理費	\''æ==" 是 *f-	の管理を行うため、2炉	の管理を行うため、3炉			
	運転人員人数	の比べ 1.5 倍の労力が必	に比べ6割程度の労力で			
		要となる。	済む。			
	薬品数量	理論上は2炉と同様	理論上は3炉と同様			
	機械点数	2 炉構成の1.5 倍の機器	3炉構成の6割程度とな			
	饭饭点数	が必要となる。	る。			
	 必要貯留量	6.50 日分≒7日分	9. 19 日分≒10 日分			
休炉時の対応	少女XJ田里	(1, 678 t)	(2, 370 t)			
(災害ごみを含む)	必要ピット容量	5, 588m³	7, 894m³			
() () () () ()	」 ピットの配置可能性	配置可能	配置可能			
		(35m × 20m)	(50m × 20m)			
工事期間		設計期間、試運転期間を	設計期間、試運転期間を			
_ 1-Mi-1		除き、概ね24か月間	除き、概ね 20 か月間			
			処理設備の性能は理論的に			
		は2炉、3炉とも変わらないため、排ガスによる環				
環境負荷 環境負荷		境負荷は両者で不変。 また、地ボスのは数名性ような人はボスの以出まま。				
垛况		また、排ガスの拡散条件を決める排ガスの吐出速度 及び排ガス温度についても両者に差はない(同一と				
			5 両者に差はない(同一と			
		することは可能)。 				
	250t/日を境として、これより/	・ 小規模だと2炉、これよりフ	大規模だと3炉が選択され			
	る場合が多い。					
	12, 000	A 4000				
		$y = 590.67x^{0.4386}$	•			
	10, 000	سنہ ،	•			
	8, 000	٠ • • • • • • • • • • • • • • • • • • •				
	α	• •				
他都市の事例	E #IIK 6, 000					
	響 4,000 製 製 4,000					
	機	$y = 672.61x^{0.3744}$				
	2, 000					
			- C N -			
	0 400 000	200 400 500	700			
	0 100 200	300 400 500	600 700 800			
		規模 t/日				

5. 本施設の計画ごみ質

本施設は、ごみ焼却発電を行うための設備を備えることを基本としているが、平成21年度以降の神谷清掃工場におけるごみ質調査結果等を用いて、処理対象物検討の際の7つのケースごとに、平常時と災害ごみ受け入れ時の計画ごみ質の検討を行った結果、いずれの場合においても、環境省循環型社会形成促進交付金制度において有利な交付率である一定以上の熱効率を確保するごみ焼却施設(高効率発電施設)への適用が可能となる、ごみの低位発熱量8,800KJ/Kg(2,100Kcal)を満たすと推定されました。

よって、高効率ごみ焼却発電を前提とした施設を整備します。

5.1 目的

ごみ焼却施設においては、ごみの貯留、移送、燃焼と熱発生、ガス減温や熱回収、あるいは排ガス処理等の各設備が備えるべき技術的内容と焼却ごみ質との間に深い関連性があるため、ごみ焼却施設を計画する際には、低質ごみ、基準ごみ及び高質ごみについて、それぞれ計画値を設定する必要があります。なお、低質ごみとは設計最低ごみ質を指し、水分が多い厨芥類等を多く含む低位発熱量の低いごみ質のことであり、逆に高質ごみとは設計最高ごみ質を指し、プラスチック類や紙類等を多く含む低位発熱量の高いごみ質のことをいいます。基準ごみとは平均的なごみ質を指します。

例えば、低質ごみを設定することによって定められた焼却量を維持するのに必要な火格子面積が決まり、また高質ごみを設定することによって通風・排ガス設備機器の容量や熱回収設備の容量等が決まることになります。ごみ焼却施設における焼却炉及び各付帯設備の容量決定に際して、各ごみ質がどのように関与するかを表5-1に示します。

関係設備ごみ質	焼却炉設備	付帯設備の容量等
高質ごみ(設計最高ごみ質)	燃焼室熱負荷 燃焼室容積 再燃焼室容積	通風設備、クレーン、ガス冷 却設備、排ガス処理設備、水 処理設備、受変電設備等
基準ごみ (平均ごみ質)	基本設計值	ごみピット
低質ごみ (設計最低ごみ質)	火格子燃焼率(ストーカ式) 火格子面積(ストーカ式)	空気予熱器、助燃設備

表5-1 ごみ質と設備計画との関係

出典: ごみ処理施設整備の計画・設計要領 2006 改訂版(公益社団法人全国都市清掃会議) p. 136 表 1.3.2-1 を一部修正した上で引用

5.2 計画ごみ質の設定方法

5. 2. 1 環境影響評価における計画ごみ質の設定方法と設定値

鳥取県東部広域行政管理組合可燃物処理施設整備事業(仮称)に係る環境影響評価(以下、「環境アセス」という。)において設定した計画ごみ質は、圏域のごみ焼却施設の中で最大規模のごみ焼却施設である神谷清掃工場の平成20~22年度のごみ質分析結果に基づいて算定しています。表5-2に環境アセスにおける計画ごみ質を示します。

第1~3回委員会のご審議を踏まえ、本施設の処理対象物としては、これまでの処理対象物であった収集可燃ごみ、事業系可燃ごみ、直搬可燃ごみ及びし渣に加え、東部環境クリーンセンターにおいて大型資源ごみ・小型破砕ごみ等を破砕した後に発生する軽量残渣及び災害ごみとすることとし、廃プラスチック類(ペットボトル、白色トレイ及びプラスチックごみ)の取り扱いについては継続審議とされたところです。

そこで、「1. 処理対象物の検討」において、廃プラスチック類の取り扱いについて複数のシナリオ(ケース1~7)を設定・検討しており、これらの各シナリオにおける平常時(災害ごみを処理しない場合)及び災害時(20t/日の災害ごみを混焼する場合)について、平成 24 年度までの最新実績を加味した上で各計画ごみ質の算出を行うものとしました。

項目	単位	低質	基準	高質
水分	%	57. 0	48.0	38. 0
可燃分	%	37. 0	46. 0	55. 0
灰分	%	6. 0	6.0	7. 0
低位発熱量	kJ/kg	7, 070	9, 790	12, 500

表5-2 環境アセスにおける計画ごみ質

5. 2. 2 本検討における各シナリオの計画ごみ質設定方法

各シナリオにおける計画ごみ質は、現時点で得られている各処理対象物のごみ質分析結果等を基に設定し、本施設の施設整備計画目標年度(平成 29 年度)におけるシナリオ別の各処理対象量に基づき加重平均処理することにより算出するものとしました。本検討における各シナリオの検討ケースを表5-3、検討フローを図5-1に示します。

各シナリオにおける計画ごみ質の設定に用いる可燃ごみのごみ質については、環境アセスにおける計画ごみ質設定と同様、神谷清掃工場における可燃ごみのごみ質分析結果(平成21~24年度)を基に暫定値を設定した上で、平成23年度における神谷清掃工場の分散型自動制御システム上で演算・記録されたごみ低位発熱量の出現頻度実績や焼却残渣発生量から推定されるごみ質の灰分量を基に検証・補正するものとしました。次に、神谷清掃工場以外の3工場(レインボーふくべ、国府町クリーンセンター及びながおクリーンステーション)に搬入されるごみ質による補正を行い、最終的な可燃ごみ質とするものとしました。

各シナリオにおける計画ごみ質の設定に用いる軽量残渣及びプラスチックごみ(容器包装プラスチック類、その他プラスチック類)のごみ質については、ごみ質分析結果(平成21~24年度)に基づき、それぞれ設定するものとしました。

各シナリオにおける計画ごみ質の設定に用いるペットボトル、白色トレイ及び災害ごみのごみ質については、既往研究における文献値に基づき、それぞれ設定するものとしました。

表5-3 計画ごみ質の検討ケース

	検討・設定ケース	ケー	ス 1	ケー	ス2	ケー	ス3	ケー	ス4	ケー	ス5	ケー	ス6	ケー	ス 7
検討・設定に用いた処理対		平常時	災害時												
可燃ごみ	収集可燃ごみ 事業系可燃ごみ 直搬可燃ごみ し渣	0	0	0	0	0	0	0	Ο	0	0	0	0	0	0
軽量残渣		0	0	0	0	0	0	0	0	0	0	0	0	0	0
災害ごみ		_	0	_	0	_	0	_	0	_	0	_	0	_	0
	容器包装類 (きれいなもの)	0	0	0	0		_								
	容器包装類 (汚れたもの)	0	0	0	0	0	0	0	0		_		_		
プラスチ ックごみ	その他 プラスチック類 (きれいなもの)	0	0	0	0	0	0	_		0	0	_		-	
	その他 プラスチック類 (汚れたもの)	0	0	0	0	0	0	0	0	0	0	0	0	_	_
ペットボ	トル	0	0			_								_	
白色トレ	1	0	0	_		—	—	_		_		_		_	

〇:焼却対象 —:焼却対象外

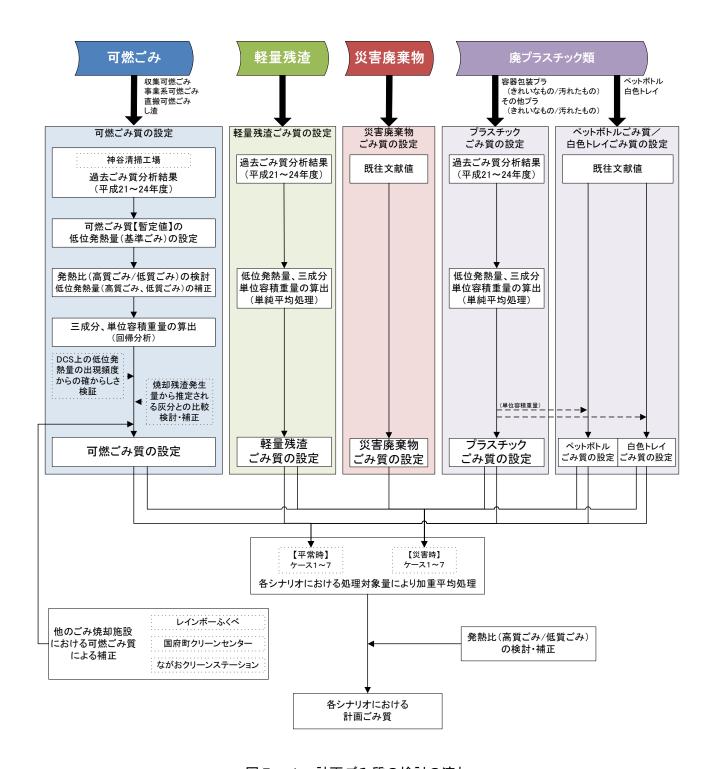


図5-1 計画ごみ質の検討の流れ

- 5. 3 各ごみ質の設定
- 5. 3. 1 可燃ごみのごみ質の設定
- (1)過去のごみ質分析結果から導かれる可燃ごみ質

神谷清掃工場では年4回のごみ質分析を行っており、平成21~24年度の実績値に基づき、可燃ごみ質暫定値を設定するものとしました。なお、環境アセスの際には平成20~22年度実績値に基づき計画ごみ質を設定していましたが、後年度実績値と比較して明らかに

傾向が異なる平成 20 年度実績値は、異常値として棄却することとしました。ごみ質分析 結果を添付資料 5-2 に示します。

また、平成 19 年度以前のごみ質分析結果を含めた神谷清掃工場における可燃ごみ低位 発熱量の推移を図5-2に示します。平成 19 年度以前のごみ質分析結果は、ごみ処理有 料化の導入前であり、神谷清掃工場独自の分析結果であることを踏まえると、単純な比較 はできないものの全体として高質化傾向にあります。

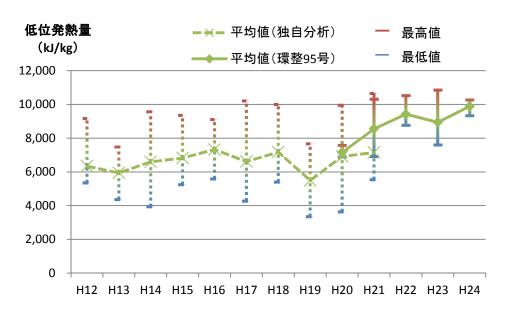


図5-2 神谷清掃工場における可燃ごみ低位発熱量の推移1

過去のごみ質分析結果より、低位発熱量(実測値)の平均値として 9,232kJ/kg が導かれたことから、端数処理を行った 9,200kJ/kg を基準ごみの低位発熱量として設定しました。また、ごみ質分析結果に基づく発熱比(高質ごみの低位発熱量/低質ごみの低位発熱量)は1.5となりました。当該ごみ質は、最終的な計画ごみ質の算出(加重平均)に使用するために設定するものであることから、実績に基づく発熱比1.5を設定値として採用するものとしました。

次に、各ごみ質における低位発熱量を基に、三成分及び単位容積重量は、ごみ質分析結果から低位発熱量との関係を求め、低位発熱量に応じた値を計算し、表 5 - 4 のとおり可燃ごみ質暫定値として設定しました。

-

¹ 神谷清掃工場が独自に実施したごみ質分析結果(12回/年)として平成12年度から平成21年度における可燃ごみ低位発熱量と、環整95号に基づき平成20年度以降実施しているごみ質分析(4回/年)における可燃ごみ低位発熱量を併載した。なお、独自分析では低位発熱量の実測を行っていないことから、独自分析及び環整95号に基づく分析の低位発熱量はいずれも「狩郷の式(組成分析からの推算式)」による計算値を用いた。

表5-4 ごみ質分析結果から導かられる可燃ごみのごみ質【暫定値】

		単位	低質ごみ	基準ごみ	高質ごみ
低位発熱量		k J /kg (kcal/kg)	7, 400 (1, 770)	9, 200 (2, 200)	11, 000 (2, 630)
Ξ	水分	%	52. 5	46. 7	40. 9
成	可燃分	%	42. 8	48. 5	54. 2
分	灰分	%	4. 7	4. 8	4. 9
単位容積重量 kg/m		kg/m ³	235	215	195

(2) 分散型自動制御システム上の低位発熱量の出現頻度からの検証

設定された可燃ごみのごみ質暫定値の低位発熱量について、平成23年度及び平成24年度における神谷清掃工場の分散型自動制御システム(以下「DCS」という。)上で演算・記録された低位発熱量の出現頻度と比較・検討を行い、可燃ごみのごみ質暫定値の各ごみ質における低位発熱量の妥当性の検証を試みました。DCS上の低位発熱量出現頻度を図5-3、DCS上の低位発熱量出現頻度累積を図5-4に示します。

神谷清掃工場の DCS 上で演算・記録された可燃ごみのごみ質の低位発熱量の出現頻度を確認すると、各炉の出現頻度に差異があり、2号炉は1号炉と比較し1,000kJ/kg 程度高質側にモードが出現していますが、これは、現状の2炉交互運転による操業の結果として、処理対象物のごみ質の季節変動が影響しているほか、耐火物損耗の進行に伴う放散熱量の変化や計器類の誤差に起因するものと考えられます。

また、2 炉を合計した平均低位発熱量は約7,000k J/kg、最も出現頻度の高い低位発熱量は6,500~7,000k J/kg にあり、過去のごみ質分析結果から導かれた低位発熱量と比較すると2,000kJ/kg 程度、低質側となっています。神谷清掃工場のようにボイラを有していない施設における DCS 上の演算は、排ガス及び燃焼空気の流量並びに温度、投入熱量により算出されるものであり、ボイラを有する施設での DCS 上の演算と比較すると精度が低いと一般的に考えられることから、本検討においては、過去のごみ質分析結果から導かれた低位発熱量がより真値に近いものと判断しました。

なお、DCS 上の信頼区間 90%の上限と下限はそれぞれ 8,489kJ/kg、5,387kJ/kg となり、発熱比(上限/下限)は約 1.6 と設定した可燃ごみのごみ質暫定値の発熱比(高質ごみ/低質ごみ)と同程度となっています。

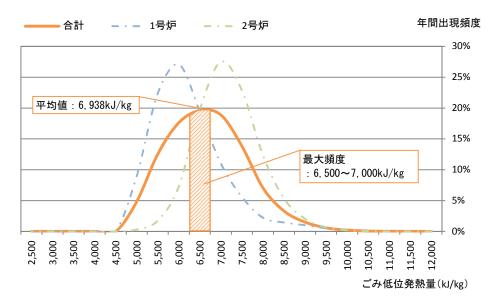


図5-3 DCS上の低位発熱量出現頻度

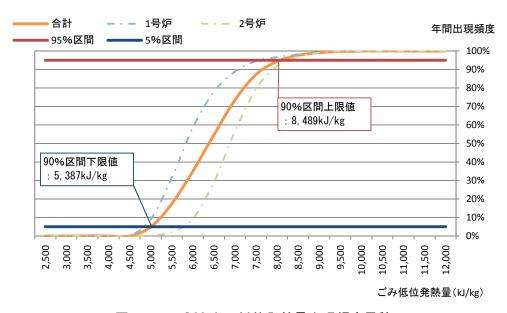


図5-4 DCS上の低位発熱量出現頻度累積

(3) 焼却残渣中のごみ由来灰分量から推定される平均灰分との比較検証

設定された可燃ごみのごみ質暫定値の三成分について、平成 24 年度における神谷清掃 工場の焼却残渣(主灰及び飛灰)中のごみ由来灰分量等から実際に焼却処理したごみの平 均灰分を推定し、可燃ごみ質暫定値の三成分の妥当性を検証しました。

平成 24 年度における神谷清掃工場灰分析結果及び運転実績に基づくマスバランスにより主灰及び飛灰中のごみ由来灰分量を計算し、ごみ焼却処理量(搬入量)からごみの平均灰分を算出したところ、処理対象物中の灰分は 7.3%となり、設定した可燃ごみ質暫定値の基準ごみにおける灰分 4.8%と大きく乖離する結果となりました。平成 24 年度における神谷清掃工場灰分析結果を表 5-5、運転実績を表 5-6、ごみ由来灰分のマスバランス

シートを図5-5に示します。なお、主灰及び飛灰中のごみ由来灰分量の算出にあたり、表5-7に示す仮定値を設定していますが、いずれも結果に与える影響は大きい項目ではありません。

表 5 - 5 神谷清掃工場灰分析結果 (平成 24 年度)

	主	灰
	水分	熱灼減量
	(%)	(%)
H24年度平均	28. 9	3. 2

表 5 - 6 神谷清掃工場運転実績 (平成 24 年度)

	搬入量	処理量	焼却灰	薬品購入量		
	顺八里	(参考値)	搬出量	消石灰	重金属安定剤	
	(t)	(t) (t) (t)			(t)	
H24年度合計	51, 951	52, 971	5, 447	71.4	21. 0	

表5-7 マスバランス算出に際して設定した仮定値

	項目	仮定値	設定根拠
а	飛灰発生量	(計算の結果) 処理対象物 中の灰分量の 16%が飛灰 に移行するものとする。	経験則 (既設メーカ他施設実績)
b	飛灰中水分	0.00%	通常、コンマ数%の水分が含まれるが、 最終結果には影響しない。
k	大型不燃物割合	0. 00%	通常、数%の大型不燃物割合となるが、最終結果には影響しない。(計算上、大型不燃物量もごみ由来灰分となる。)
q	固化飛灰中水分	15. 0%	経験則 (既設メーカ他施設実績)

図5-5 処理対象物中の平均灰分の推定(マスバランスシート)

ごみ質分析において代表サンプル採取や縮分操作などを常に正確に実施することは 事実上不可能であり、分析結果にはある程度のばらつきが発生しますが、操作上の誤 差による分析結果への影響は、低位発熱量と比較して三成分、特に灰分は顕著となる 場合があるようです。

以上を踏まえ、焼却残渣中のごみ由来灰分量から推定した処理対象物の灰分との比較結果より、過去のごみ質分析結果から導いた可燃ごみ質暫定値の灰分は過小に評価されているものと推定し、低質ごみ、基準ごみ及び高質ごみの灰分がそれぞれ+2.5%となり、かつ可燃分の低位発熱量が変動しないよう可燃ごみのごみ質暫定値の三成分を補正するものとしました。補正した結果を表5-8に示します。

	項目	単位		低質ごみ			基準ごみ			高質ごみ	
	項目	平位	補正前	補正値	補正後	補正前	補正値	補正後	補正前	補正値	補正後
准片	発熱量(HI)	kJ/kg	7, 400	0	7, 400	9, 200	0	9, 200	11,000	0	11, 000
山水山	光然里(Ⅲ)	(kcal/kg)	(1, 770)	(0)	(1, 770)	(2, 200)	(0)	(2, 200)	(2, 630)	(0)	(2, 630)
Ξ	水 分(W)	%	52. 5	-2. 227	50. 3	46.7	-2. 238	44. 5	40. 9	-2. 247	38. 7
成	可燃分(B)	%	42.8	-0. 273	42. 5	48.5	-0. 262	48. 2	54. 2	-0. 253	53. 9
分	灰 分(A)	%	4. 7	+2.5	7. 2	4. 8	+2.5	7. 3	4. 9	+2.5	7. 4
可燃剂	分の低位発熱量 (HIb)	kJ/kg	20, 356	0	20, 356	21, 376	0	21, 376	22, 196	0	22, 196
	正方法 計算式)	_		, 正値)+ ′ 補正前)	=HIb(補	[) +B(補					
単	位容積重量	kg/m ³		235			215			195	

表5-8 三成分を補正した可燃ごみのごみ質

(4)他のごみ焼却施設における可燃ごみのごみ質による補正

以上より設定された可燃ごみのごみ質は神谷清掃工場のごみ質分析結果に基づいて 算出したものですが、東部圏域のその他の既設ごみ焼却施設であるレインボーふくべ、 国府町クリーンセンター及びながおクリーンステーションにおいて焼却処理している 可燃ごみも処理対象となります。神谷清掃工場処理対象区域と比較し、これらの3工 場の計画処理区域内に存在する事業所の数が少なく、可燃ごみに含まれる事業系一般 廃棄物の割合が小さい、すなわち低位発熱量が相対的に低いものと推察されます。

よって、これら3工場における可燃ごみのごみ質を過去ごみ質分析結果から導いた上で、平成24年度における各工場の可燃ごみ搬入量に基づき加重平均処理することにより、可燃ごみのごみ質を補正するものとし、これを本施設の計画ごみ質検討に際して最終的な加重平均処理に用いる可燃ごみのごみ質としました。

各工場における可燃ごみのごみ質分析結果(平成 $20\sim24$ 年度)から導かれた各可燃ごみのごみ質を表 5-9、加重平均処理により補正した可燃ごみのごみ質を表 5-10に示します。

表5-9 ごみ質分析結果から導かれる3工場の可燃ごみのごみ質

				施設	レイ	ンボーふ	くべ	国府町	クリーンセ	ンター	ながおク	ながおクリーンステーション			
			単位	低質ごみ	基準ごみ	高質ごみ	低質ごみ	基準ごみ	高質ごみ	低質ごみ	基準ごみ	高質ごみ			
低位発熱量		相回	k J /kg (kcal/kg)	4, 400 (1, 050)	5, 600 (1, 340)	6, 800 (1, 620)	4, 900 (1, 170)	6, 100 (1, 460)	7, 300 (1, 740)	4, 700 (1, 120)	6, 100 (1, 460)	7, 500 (1, 790)			
Ξ	水	< :	分	%	64. 6	60.0	55. 5	63.5	58. 5	53. 4	64. 2	58. 9	53. 6		
成	口	」燃:	分	%	29. 0	34. 1	39. 3	31. 4	36. 2	41.0	30. 0	36.0	42. 1		
分	灰	₹ :	分	%	6. 4	5. 9	5. 2	5. 1	5. 3	5. 6	5. 8	5. 1	4. 3		
単位	単位容積重量		量	${\sf kg/m}^3$	230	260	290	255	265	275	260	265	275		
H244	l24年度搬入量		量人	t/年		799		2, 242			3, 989				

[※]神谷清掃工場における平成24年度可燃ごみ搬入量:51,951 t/年

表5-10 加重平均処理により補正した可燃ごみのごみ質

		単位	低質ごみ	基準ごみ	高質ごみ
低	位発熱量	k J /kg (kcal/kg)	7, 100 (1, 700)	8, 800 (2, 100)	10, 600 (2, 530)
Ξ	水分	%	51. 9	46. 2	40. 5
成	可燃分	%	41. 1	46. 7	52. 4
分	分 灰 分 %		7. 0	7. 0	7. 1
単位容積重量		kg/m ³	240	220	200

5. 3. 2 軽量残渣ごみのごみ質の設定

本施設の処理対象物である軽量残渣については、本組合において年1回のごみ質分析を行っており、平成21~24年度の実績値に基づき、軽量残渣ごみのごみ質を設定するものとしました。なお、軽量残渣は民間施設における資源化に際して排出される残渣であり、当該ごみ質の変動は小さいと考え、低位発熱量、三成分及び単位容積重量の算出に際しては単純平均処理するものとしました。設定した軽量残渣ごみ質を表5-11に示します。

表5-11 ごみ質分析結果から導かれる軽量残渣ごみのごみ質

		単位	基準ごみ
1	氐位発熱量	k J /kg (kcal/kg)	19, 400 (4, 630)
Ξ	水 分	%	1.3
成	可燃分	%	50. 5
分	灰分	%	48. 2
単	.位容積重量	kg/m ³	195

^{※3}工場のごみ質分析においては低位発熱量を実測していないため、狩郷の式による計算値を採用

5. 3. 3 災害ごみのごみ質の設定

災害ごみのごみ質は、一般社団法人廃棄物資源循環学会「災害廃棄物対策・復興タスクチーム」が取りまとめた「災害廃棄物の燃焼試験に関する報告書」における災害廃棄物分析結果を引用するものとしました。なお、当該分析結果には単位容積重量が示されていないため、これについては、東京二十三区清掃一部事務組合が取りまとめた「女川町災害廃棄物焼却試験評価書(平成23年9月、宮城県女川町実施)」におけるごみ性状調査結果を引用するものとしました。設定した災害ごみのごみ質を表5-12に示します。

				1 C-7 +7 C-7 -7				
		単位	災害廃棄物	出典				
低位発熱量		kJ/kg	10, 400					
143	. 似 光 然 里	(kcal/kg)	(2, 490)	廃棄物資源循環学会資料をもとに計算 				
Ξ	水 分	%	30. 1	廃棄物資源循環学会資料				
成	可燃分	%	65. 8	廃棄物資源循環学会資料をもとに計算				
分	分 灰 分 %		4. 1	廃棄物資源循環学会資料をもとに計算				
単位	立容積重量	kg/m ³	161	東京二十三区清掃一部事務組合資料				

表5-12 設定した災害ごみのごみ質

5. 3. 4 プラスチックごみのごみ質の設定

本施設の計画ごみ質検討に際して最終的な加重平均処理に用いるプラスチックごみのごみ質として、容器包装プラスチック類(きれいなもの、汚れたもの)及びその他プラスチック類(きれいなもの、汚れたもの)については、本組合において年1回の頻度で実施しているごみ質分析結果(平成21~24年度)の実績値に基づき設定するものとしました。なお、プラスチックごみは種類組成が比較的一様であり、当該ごみ質の変動は小さいと考え、低位発熱量、三成分及び単位容積重量の算出に際しては単純平均処理するものとしました。設定したプラスチックごみのごみ質を表5-13に示します。

'_		7.民力11111111111不	いっつきょう	いのフラステラフにの
			単位	基準ごみ
	低	位発熱量	kJ/kg (kcal/kg)	36, 100 (8, 620)
	Ξ	水分	%	4. 9
	成	可燃分	%	92. 7
	分	灰分	%	2. 4
Ī	単位	立容積重量	kg/m ³	30

表 5-13 ごみ質分析結果から導かれるプラスチックごみのごみ質

5. 3. 5 ペットボトルごみのごみ質及び白色トレイごみのごみ質の設定

本施設の計画ごみ質検討に際して最終的な加重平均処理に用いるペットボトルごみのごみ質及び白色トレイごみのごみ質については、社団法人全国都市清掃会議編集発行の「ごみ処理施設整備の計画・設計要領 2006 改訂版」に示されている「都市ごみを構成する代表的な可燃物の三成分」並びに「都市ごみの発熱量(ボンブ熱量計で測定)」(いずれも出典は片柳健一(昭和 60 年)「都市固形廃棄物の熱分解処理に関する基礎的研究」。)の文献値を採用するものとしました。なお、単位容積重量については、適当な文献値が得られなかったため、ごみ質分析結果より導いたプラスチックごみのごみ質の数値を代用するものとした。設定したペットボトルごみのごみ質及び白色トレイごみのごみ質を表 5 -14 に示します。

表5-14 設定したペットボトルごみのごみ質及び白色トレイごみのごみ質

		単位	ペットボトル	白色トレイ
出典に	おける試料名	_	洗剤容器	発泡トレイ
低	位発熱量	kJ/kg (kcal/kg)	23, 204 (5, 540)	38, 368 (9, 170)
Ξ	水 分	%	0.6	1. 0
成	可燃分	%	99. 3	98. 1
分	灰分	%	0. 1	0. 9
単位	拉容積重量	kg/m^3	30	30

出典:片柳健一(昭和60年)「都市固形廃棄物の熱分解処理に関する基礎的研究」 ※ペットボトルについては、PET 樹脂で製造されていると考えられる「洗剤容器」を採用した。 (低位発熱量は PET ボトルリサイクル推進協議会が示している低位発熱量約23kJ/kg と一致する。)

5. 4 計画ごみ質の検討

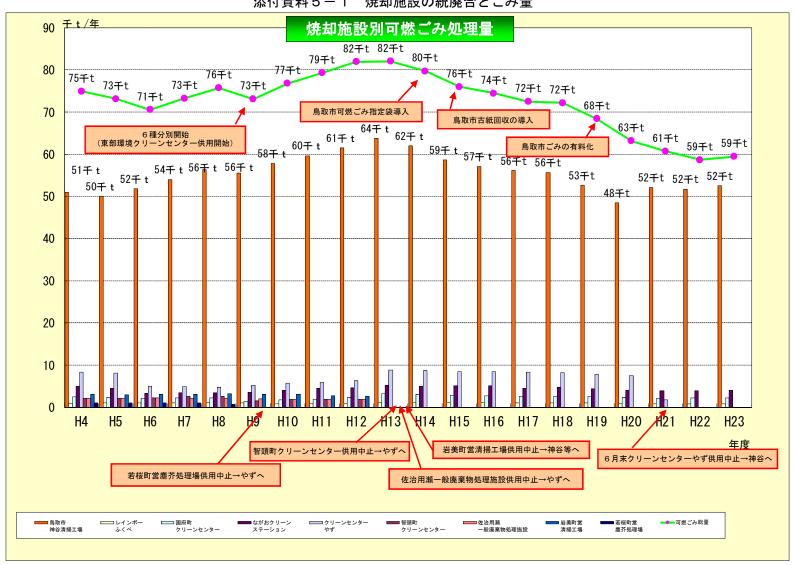
5. 4. 1 施設整備計画目標年度におけるシナリオ別の処理対象量

本施設の計画ごみ質の検討に際して、各シナリオにおいて加重平均処理を行う処理 対象物及び平成 29 年度における処理対象量を表 5 - 15 に整理しました。

表 5-15 平成 29 年度におけるシナリオ別の処理対象量(単位: t/年)

各シナリオ	ケース 1		ケース 2		ケー	ケース 3		ケース 4		ケース 5		ケース 6		スフ
処理対象物	平常時	災害時												
可燃ごみ (しき含む)	58, 052	58, 052	58, 052	58, 052	58, 052	58, 052	58, 052	58, 052	58, 052	58, 052	58, 052	58, 052	58, 052	58, 052
軽量残渣	827	827	871	871	871	871	871	871	871	871	871	871	871	871
災害廃棄物	_	7, 372	_	7, 372	_	7, 372	_	7, 372	_	7, 372	_	7, 372	_	7, 372
プラスチックごみ	2, 952	2, 952	2, 952	2, 952	1, 560	1, 560	626	626	964	964	30	30	_	_
ペットボトル	362	362	_	_	_	_	_	_	_		_	_	_	_
白色トレイ	38	38	_	_	_	_	_	_	_	_	_	_	_	_
合 計	62, 231	69, 603	61, 875	69, 247	60, 483	67, 855	59, 549	66, 921	59, 887	67, 259	58, 953	66, 325	58, 923	66, 295

5. 4. 2 各シナリオにおける計画ごみ質の算出


項2. 3において設定された各処理対象物のごみ質について、シナリオ別の平成29年度における処理対象量により加重平均処理を行った上で、社団法人全国都市清掃会議編集発行の「ごみ処理施設整備の計画・設計要領2006改訂版」I.1ごみ処理基本計画の策定1.6基本計画の策定6)ごみ質の上、下限の設定(2)計画ごみ質の設定手順(p.38-40)を踏まえ、本施設処理能力の余裕度に配慮し、発熱比(高質ごみの低位発熱量/低質ごみの低位発熱量)が「2.25」となるように各パラメータを補正しました。各シナリオにおける計画ごみ質の算出結果を表5-16に取りまとめるとともに、各シナリオの加重平均処理算出結果を添付資料5-3に示します。

なお、近年発注された全国的なごみ焼却施設における計画ごみ質を整理したところ、環境省データベース(平成 22 年度)によると基準ごみの低位発熱量は $4,700 \mathrm{kJ/kg-12},625 \mathrm{kJ/kg}$ ($1,120 \mathrm{kcal/kg-3},020 \mathrm{kcal/kg}$) の範囲にあり、発熱比は平均 2.19 となっています。

表 5-16 各シナリオにおける計画ごみ質の算出結果一覧表

₹,+	リオ			ケー	7 1					ケー	7 2			
	グタング グラング グラング グラング きゅうしん グラング きゅうしん グラン かんしょう かんしょ かんしょう かんしょ かんしょ かんしょ かんしょ かんしょ かんしょ かんしょ かんしょ		平常時	- 7-	^	災害時			平常時	- 7 -	^ 2	災害時		
	対象物		を を類 (きれし でが類(きれし ボトル			を を物 を類(きれし でか類(きれし ボトル	い・汚れ) い・汚れ)		+		・軽量残済 ・災害廃棄 ・容器包装	・可燃ごみ ・軽量残渣 ・災害廃棄物 ・容器包装類(きれい・汚れ) ・製品プラスチック類(きれい・汚れ)		
ごみ	り質	低質ごみ	基準ごみ	高質ごみ			高質ごみ	低質ごみ	基準ごみ	高質ごみ	低質ごみ	基準ごみ	高質ごみ	
低位列	発熱量													
kJ,	/kg	6, 300	10, 300	14, 300	6, 300	10, 300	14, 300	6, 300	10, 200	14, 100	6, 300	10, 300	14, 300	
(kcal/kg)		(1, 500)	(2, 460)	(3, 420)	(1, 500)	(2, 460)	(3, 420)	(1, 500)	(2, 440)	(3, 370)	(1, 500)	(2, 460)	(3, 420)	
	水分	54.0	43. 4	31.5	54. 0	42.0	29. 6	54. 2	43. 7	32. 1	54. 1	42. 2	29.6	
三成分	可燃分	38. 7	49. 3	61.0	39. 1	51.0	63. 3	38.5	49.0	60. 4	38. 9	50.8	63. 2	
	灰分	7. 3	7. 3	7. 5	6. 9	7. 0	7. 1	7.3	7.4	7.5	7. 0	7. 0	7. 2	
単位容積重	量 (kg/m³)	175	165	155	170	165	155	180	170	155	175	170	160	
シナ	リオ			ケー	ス3					ケー	ス 4			
平常時/	/災害時		平常時			災害時			平常時			災害時		
処理対	対象物					Ē						Ē	れ)	
ご∂	4質	低質ごみ	基準ごみ	高質ごみ	低質ごみ	基準ごみ	高質ごみ	低質ごみ	基準ごみ	高質ごみ	低質ごみ	基準ごみ	高質ごみ	
	発熱量													
	/kg	5, 900	9, 600	13, 300	6, 000	9, 700	13, 400	5, 700	9, 200	12, 700	5, 800	9, 400	13, 000	
(kca	l/kg)	(1, 410)			(1, 430)	(2, 320)	(3, 200)	(1, 360)		(3, 030)	(1, 390)	(2, 250)	(3, 110)	
_ + ^	水分	56. 1	44.5	33.0	56. 1	42.9	30.8	57. 3	45. 1	33.8	57. 4	43. 5	30. 7	
三成分		36. 5	48. 1	59. 4	36. 9	49.9	62. 0	35. 2	47. 3	58. 5	35. 4	49. 3	61.9	
	灰分	7.4	7. 5	7.6	7. 0	7. 2	7. 2	7.5	7. 6	7.7	7. 2	7. 2	7.4	
単位容積重		205	190	175	195	185	175	225 205 190		<u> 215 200 </u> -ス 6		185		
	リオ		TT 245 n+	ケー	<u> </u>	₩ 中 n+			平常時	ケー	ス 6	災害時		
	/災害時 対象物	可燃ごみ軽量残済製品プラスチ		ヽ・汚れ)	び害時 - 可燃ごみ - 軽量残渣 - 災害廃棄物 - 災害廃棄物 - 製品プラスチック類(きれい・汚れ)			可燃ごみ軽量残渣製品プラスチック類 (汚れ)			・ 可燃 ごみ ・ 軽量残渣 ・ 災害廃棄物 ・ 製品プラスチック (汚れ)			
ご∂	4質	低質ごみ	基準ごみ	高質ごみ			高質ごみ	低質ごみ	基準ごみ	高質ごみ		基準ごみ		
低位列	発熱量													
kJ,	/kg	5, 800	9, 400	13, 000	5, 800	9, 500	13, 200	5, 500	9, 000	12, 500	5, 600	9, 100	12, 600	
	l/kg)	(1, 390)			(1, 390)					(2, 990)		(2, 170)		
	水分	56.7	44.9	33. 2	57. 2		30.6		45.5		58.8	43. 8		
三成分	可燃分	35. 8	47.5	59. 2	35. 7	49.5	62. 0	34. 0	46. 8	58. 7	34. 1	48. 9	61.3	
	灰分	7.5	7. 6	7.6	7. 1	7. 2	7. 4	7.5	7.6	7.7	7. 1	7. 3	7.4	
単位容積重		215	200	185	205	195	180	240	220	200	225	210	195	
	リオ		₩ n±	ケー	人 /	« ≠ n±								
平吊時/	/災害時	・可燃ごみ	平常時		・可燃ごみ	災害時								
	対象物	・軽量残済	<u> </u>		・軽量残済 ・災害廃棄	至 集物								
	4質 8 熱 豊	低質ごみ	基準ごみ	高質ごみ	低質ごみ	基準ごみ	高質ごみ							
	発熱量	E 500	0 000	10 000	E 000	0 100	10 000							
	/kg /kg)	5, 500	8, 900 (2, 120)	12, 300	5, 600	9, 100	12, 600							
(кса	l/kg)	(1, 310)	(2, 130)	(2, 940)	(1, 340)	(2, 170)	(3, 010)							
三成分	水分 可燃分	57. 1 35. 3	45. 6 46. 8	34. 7 57. 6	57. 0 35. 8	43.8 48.9	32. 0 60. 7							
_ <i>,</i> ,,,,,,	灰分	7. 6	7.7	7.7	7. 2	7.3	7.3							
単位容積重		235	215	195	225	205	190							
半世谷恒里	± (ng/Ⅲ)		Z 1 Ü	เรย	220	200	190							

添付資料5-1 焼却施設の統廃合とごみ量

添付資料 5 - 2 検討に用いた神谷清掃工場におけるごみ質分析結果 神谷清掃工場におけるごみ質分析結果

			単 位	並 種類組成 (乾燥重量ベース)					三成分			tooooooo	低位発熱量	Ė		データ		
10000000			容積重量	紙 類	プラ類	木 類	厨芥類	不燃物	その他	水 分	灰分	可燃分	計算值1	計算値2	実測	削値	可燃分(実)	採用可否
年	月	年度	kg/m^3	%	%	%	%	%	%	%	%	%	k J /kg	k J /kg	k J /kg	kca I /kg	k J /kg	
20	8	20	203	59.6	13.6	18.5	6.0	0.6	1.7	55. 10	5.30	39.6	6,074	6, 970	5, 570	1, 331	17, 544	棄却
20	10	20	210	65.6	15.0	11.7	4.0	0.1	3.6	56.10	5.00	38. 9	5, 919	6, 886	5,910	1,412	18, 798	棄却
20	12	20	210	51.3	20.3	6.0	20.3	0.2	1.9	56.40	4.80	38.8	5, 894	7, 196	5, 570	1,331	17, 990	棄却
21	5	21	201	57.4	8.4	12. 2	5. 1	6. 2	10.6	46.78	10.34	42.9	6, 903	7,564	9,650	2, 305	25, 232	採用
21	7	21	269	61.2	12.1	6.8	18.1	0.3	1.5	55.45	4.67	39. 9	6, 120	6,915	7, 880	1,882	23, 235	採用
21	10	21	221	64.1	11.0	8.4	14.5	0.1	1.9	52.49	3.08	44. 4	7,049	7,807	8, 380	2,002	21, 815	採用
21	12	21	260	52.9	12.8	2.5	28.7	0.2	2.8	40.39	5.56	54. 1	9, 167	10,306	9, 740	2, 327	19,889	採用
22	6	22	197	54.4	10.0	24.1	7.3	1.0	3.3	43.18	6.85	50.0	8,330	9, 167	9,210	2, 200	20, 591	採用
22	7	22	269	55.4	18.0	12.7	12.2	0.3	1.5	44.53	8.50	47.0	7, 727	9, 201	9, 780	2, 336	23, 192	採用
22	10	22	141	73.6	12.6	7.2	4.7	1.2	0.8	39.42	5.38	55. 2	9, 406	10,520	11, 110	2,654	21, 912	採用
22	12	22	182	50.3	22.6	3.2	22.6	0.1	1.2	50.13	3.16	46.7	7, 539	9, 193	9, 400	2, 246	22, 807	採用
23	4	23	200	64.0	15.6	9.1	5.8	2.4	3.1	47.90	5.50	46.6	7, 577	8,761	7, 760	1,854	19, 222	採用
23	7	23	248	63.6	12.6	7.4	14.7	0.8	0.9	51.80	5.70	42.5	6, 706	7,598	7, 530	1, 799	20, 765	採用
23	10	23	205	63.1	14.3	11.4	9.3	0.8	1.1	47.90	6.40	45.7	7, 405	8, 506	8,370	1,999	20, 935	採用
23	12	23	219	66.8	9.6	11.7	10.3	0.4	1.2	47.10	3.90	49.0	8,046	8, 795	8, 490	2, 028	19, 730	採用
24	7	24	236	52.9	25.1	10.9	9.6	0.2	1.3	43.81	3.71	52.5	8, 787	10,854	11,010	2,630	23, 066	採用
24	8	24	261	63.9	9.6	18. 2	7.1	0.3	0.9	40.30	5.41	54.3	9, 213	10,051	9,870	2, 358	20,036	採用
24	10	24	204	59.1	14.7	8.3	15.6	1.0	1.2	45.52	5.02	49.5	8, 175	9, 335	9,310	2, 224	21, 124	採用
24	12	24	148	55.68	20.24	10.74	11. 25	0.00	2.1	44.61	3.72	51.7	8, 611	10, 260	10, 210	2, 439	21, 918	採用
gmannamanananan			ymmens#000000000000000000000000000000000000		y		y								yrononomonomonomonomonomonomonomonomonomo			9
	合計		3, 461	958	229	165	197	15	35	741	87	772	126, 762	144, 833	147, 700	35, 284	345, 469	n=16

合計	3, 461	958	229	165	197	15	35	741	87	772	126, 762	144, 833	147, 700	35, 284	345, 469
平均	216	59.9	14.3	10.3	12.3	1.0	2.2	46.3	5.4	48. 2	7, 923	9,052	9, 231	2, 205	21, 592

	計算值1	計算値2	実測値	実測値
平 均	7, 923	9,052	9, 231	2, 205
分 散	932, 418	1, 363, 975	1, 182, 038	86, 559
標準偏差	966	1, 168	1,087	294
最小値	6, 120	6, 915	7,530	1, 799
下限値(X1)	6,334	7, 131	7, 443	1,721
平均値	7, 923	9, 052	9, 232	2, 205
上限値(X2)	9,511	10,973	11,020	2, 689
最大値	9, 406	10,854	11, 110	2, 654
X2/X1	1.5	1.5	1.5	1.6

添付資料5-3 各シナリオの加重平均処理算出結果【ケース1:平常時】

ごみ種類	话口			ごみ		ごみ	高質	ごみ
	項目			加重平均值		加重平均值	各対象物のごみ質	加重平均值
可燃ごみ質	低位発熱量	kJ/kg	7,100		8,800		10,600	
	三成分	(kcal/kg) 水分	(1,700) 51.9	48.4	(2,100) 46,2	43.1	(2,530) 40,5	37.8
搬出割合(湿)	一 以力	可燃分	41.1	38.3	46.2	43.1	52.4	37.0 48.9
93.28%		灰分	7.0	6.5	7.0	6.5	7.1	6.6
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	20,512	19,539	21,299	19,078	22,148	20,066
89.57%		(kcal/kg)	(4,900)	(4,668)	(5,088)	(4,558)	(5,291)	(4,794)
軽量残渣ごみ質	低位発熱量	kJ/kg	19,400		19,400		19,400	
	三成分	(kcal/kg) 水分	(4,630) 1.3	0.0	(4,630) 1.3	0.0	(4,630) 1.3	00
搬出割合(湿)	二成刀	可燃分	50.5	0.0	50.5	0.0	50.5	0.0 0.7
1.33%		灰分	48.2	0.6	48.2	0.6	48.2	0.6
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	38,445	642	38,445	530	38,445	478
1.38%		(kcal/kg)	(9,184)	(153)	(9,184)	(127)	(9,184)	(114)
プラスチックごみ質	低位発熱量	kJ/kg	36,100		36,100		36,100	
	一十八	(kcal/kg)	(8,620)	0.0	(8,620)		(8,620)	
搬出割合(湿)	三成分	水分 可燃分	4.9 92.7	0.2 4.4	4.9 92.7	0.2 4.4	4.9 92.7	0.2 4.4
版正部 (温) 4.74%		灰分	24	0.1	24	0.1	2.4	0.1
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	39,060	1,197	39,060	3,530	39,060	3,183
9.04%		(kcal/kg)	(9,331)	(286)	(9,331)	(843)	(9,331)	(760)
ペットボトルごみ質	低位発熱量	kJ/kg	23,204		23,204		23,204	
	—————————————————————————————————————	(kcal/kg)	5,540		(5,540)		5,540	
協山割合 (油)	三成分	水分 可燃分	0.6 99.3	0.0 0.6	0.6 99.3	0.0 0.6	0.6 99.3	0.0 0.6
搬出割合(温) 0.58%		灰分	0.1	0.0	0.1	0.0	0.1	0.0
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	23,371	2	23,371	2	23,371	2
0.01%		(kcal/kg)	5,583	0	(5,583)	0	5,583	Ō
白色トレイごみ質	低位発熱量	kJ/kg	38,368		38,368		38,368	
		(kcal/kg)	9,170		(9,170)		9,170	
Martina (SE)	三成分	水分	1.0	0.0	1.0	0.0	1.0	0.0
搬出割合(湿) 0.06%		可燃分 灰分	98.1 0.9	0.1 0.0	98.1 0.9	0.1 0.0	98.1 0.9	0.1 0.0
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	39,156	1	39,156	0.0	39,156	0.0
0.00%	らんだい ひと 位 が 一	(kcal/kg)	9,354	Ö	(9,354)	Ö	9,354	ŏ
全体	低位発熱量	kJ/kg		8,184		10,314		11,997
(加重平均処理)		(kcal/kg)		(1,955)		(2,464)		(2,866)
Hartista (CD)	三成分	水分		48.7		43.4		38.0
搬出割合(湿) 99.99%		可燃分 灰分		44.0 7.3		49.3 7.3		54.6 7.4
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg		21,380		23,141		23,729
100.00%		(kcal/kg)		(5,107)		(5,528)		(5,669)
計画ごみ質(ケース1	・立合時)		低質	<i>ニ</i> ゚゚゙゙ み	其淮	ごみ	高質	<i>:</i> "''
	· — (1000)	1. 1/1	四页				同县	
	低位発熱量	kJ/kg		6,300		10,300		14,300
		(kcal/kg)		(1,500)		(2,460)		(3,420)
		水分		54.0		43.4	,	31,5
発熱比=2.25と	三成分	可燃分		38.7		49.3		61.0
なるよう各パラ メータを補正		灰分		7.3		7.3		7.5
, J C 1,01E		kJ/kg		19,730		23,107		24,766
	可燃分の低位発熱量	(kcal/kg)		(4,713)		(5,520)		(5,916)
	出位应注手具							
	単位容積重量	kg/m ³		175		165		155
	可燃分の元素組成比		低質ごみ	基準ごみ	高質ごみ			
	C H	dry % dry %	51.10 6.98	56.52 7.92	59.19 8.38			
	N N	dry %	1.37	1.92	1.18			
	S	dry %	0.11	0.11	0.11			
	C I	dry %	0.70	1.24	1.52			
	0	dry %	39.74	32,96	29.63			
	合計	dry %	100,00	100,00	100,00			
	可燃分の低位発熱量	L. 1/1	10715	02400	24704			
	(参考値)	kJ/kg	19,715	23,120	24,794			

添付資料5-3 各シナリオの加重平均処理算出結果【ケース1:災害時】

機能力	ごみ種類	項目		低質 各対象物のごみ質	ごみ加重平均値	基準各対象物のごみ質		高質 各対象物のごみ質	
田田市名 (田)	可燃ごみ質	低位発熱量	kJ/kg		加里十均但		加里十均但		加里十均但
開出版名 (印度)				***************************************					
図3.40年	協山割合 ()目)	三成分							
#出版 (の 図 例) 一								9	
特別		可燃分の低位発熱量		20,512				22,148	
(coal/kg)		ガナを劫口			(4,568)		(3,928)		(4,189)
田田田台 (田)	軽量残渣ごみ質	低位発熱重							
1.19% 日本語		三成分			0.0		0.0		0.0
選出語に「関係が									
1.19% 1		可憐くの氏点系効果							
10.400 10.400 10.400 10.400 10.400 10.400 10.400 10.400 10.400 10.400 10.400 10.400 10.400 10.400 10.400 10.400 10.400 10.400 10.400 10.500		可然为少医世光然里	(kcal/kg)			(9,184)			
選出的 (部)		低位発熱量	kJ/kg			10,400			
一部語音 (理)		一件八			2.0		20		2.0
10.59% 一切	松出割合 (温)	二队万							
1881% (Real/kg) (4,059) (86) (4,059) (560) (4,059) (512) (560) (4,059) (512) (560) (4,059) (560) (8,620)								4.1	
#出語(日)		可燃分の低位発熱量		,					
(Koal/kg) (Roal/kg) (低位発熱量			(86)		(000)		(512)
開出制合 (湿)	- J J J C , g		(kcal/kg)	(8,620)		(8,620)		(8,620)	
#出制合 (回転分)		三成分							
#出制合 (司総分) 「関係分の低近発熱量 (k.//kg 39,060 1,1/71 39,060 3,043 39,060 2,781 (7.79% (k.cal/kg) 9,331) (280) 9,331) (727) (9,331) (664) (727) (9,331) (664) (804) (9,331) (727) (9,331) (664) (804) (9,331) (604) (804) (9,331) (604) (804) (9,331) (604) (804) (9,331) (604) (804) (9,331) (604) (9,331) (604) (9,331) (604) (9,331) (604) (9,331) (604) (9,331) (604) (9,331) (604) (9,331) (604) (9,331) (604) (9,331) (604) (9,331) (604) (9,331) (604) (9,331) (9,331) (604) (9,331) (604) (9,331) (604) (9,331) (9,331) (604) (9,331)									
株田制命 (国際)		可燃分の低位発熱量				39,060			
(Recal/kg) 5,540		バ 上 3½±+ ==			(280)		(727)		(664)
選出割合 (開)	ベットボトルごみ質	<u> </u>							
照出書合(譲)		三成分			0.0		0.0	announce and an analysis and a	0.0
#出割合(可燃分)			可燃分	99.3	0.5	99.3	0.5	99.3	0.5
日色トレイご分質 低位発熱量		可燃公の低位登劫書							
### (他位発熱量		可添为6万吨世光热重							
三成分 水分 1.0 0.0 1.0 0.0 1.0 0.0		低位発熱量	kJ/kg	38,368		38,368		38,368	
#出割合(湿)		一件八			00		00		
Description	搬出割合 (温)	二队刀							
Coon	0.05%		灰分	0.9		0.9	0,0	0.9	0.0
全体 (加重平均処理)		可燃分の低位発熱量					1		
(Mally (Mally (Mally (Mally Mally		低位発熱量		9,354		(9,354)		9,354	
三成分 水分 46.7 42.0 37.2 55.8 99.99% 可燃分の低位発熱量 kJ/kg 21,287 (5,085) (5,325) (5,466) (5,466) (5,466) (6,46			(kcal/kg)		(2,074)		(2,466)		
99.99% 灰分 7.0 6.9 7.0 7.1 7.0 7.0 7.0 7.1 7.0 7.0 7.0 7.1 7.0		三成分	水分						37.2
#出割合 (可燃分) 100,00% 可燃分の低位発熱量 kJ/kg (kcal/kg) (5,085) (5,085) (5,325) (5,466) (5,325) (5,466) (5,000) (5,325) (5,466) (5,466) (5,325) (5,466) (5,466) (5,466) (5,466) (5,466) (6,460)									
100,00% (kcal/kg) (5,085) (5,325) (5,466) (5,325) (5,466) (5,325) (5,466) (5,325) (5,466) (5,325) (5,466) (5,325) (5,466) (5,325) (5,466) (5,325) (5,466) (5,325) (5,466) (5,325) (5,466) (5,325) (5,466) (5,325) (5,466) (5,325) (5,466) (5,325) (5,32	k	可燃分の低位発熱量	kJ/kg		21,287		22,292		22,879
低位発熱量									(5,466)
接触比=2.25となるよう各パラメータを補正 本分	計画ごみ質(ケース1	: 災害時)		低質	ごみ	基準	ごみ	高質	ごみ
発熱比=2.25と なるよう各バラメータを補正		任	kJ/kg		6,300		10,300		14,300
発熱比=2.25となるよう各パラメータを補正 三成分 可燃分 39.1 51.0 63.3 反分 6.9 7.0 7.1 可燃分の低位発熱量 kJ/kg (kcal/kg) 19.528 22.245 23,791 単位容積重量 kg/m³ 170 165 155 可燃分の元素組成比率(推定) 低質ごみ 基準ごみ 高質ごみ 日本により 日本により (表記) 1.38 1.28 1.22 日本により 日本により (1.1 1.1 1.36 日本により 日本により (1.1 1.10 1.36 日本により 1.10 1.10 1.10		12000000000000000000000000000000000000	(kcal/kg)		(1,500)		(2,460)		(3,420)
発熱比=2.25となるよう名バラメータを補正 三成分 可燃分 39.1 51.0 63.3 灰分 6.9 7.0 7.1 可燃分の低位発熱量 (kcal/kg) kJ/kg (kcal/kg) 19.528 (22,245) 23,791 (5,683) 単位容積重量 kg/m³ 170 165 155 可燃分の元素組成比率 (推定) 低質ごみ 基準ごみ 高質ごみ (4,665) 57.62 (4) 日 付 分の元素組成比率 (推定) 低質ごみ 基準ごみ 高質ごみ (4) 57.62 (4) 日 付 分 (4) 分 (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7			水分		54.0		42.0		29.6
収分 6.9 7.0 7.1 可燃分の低位発熱量 kJ/kg (kcal/kg) 19,528 22,245 23,791 単位容積重量 kg/m³ 170 165 155 可燃分の元素組成比率(推定) 低質ごみ 基準ごみ 高質ごみ 50,77 55.14 57,62		三成分	可燃分						
可燃分の低位発熱量			灰分		•		-		
回燃力の低位発熱量		可憐ハのにけざむョ	kJ/kg						
単位容積重量 kg/m³ 170 165 155 可燃分の元素組成比率(推定) 低質ごみ 基準ごみ 高質ごみ 高質ごみ C dry % 50.77 55.14 57.62 H dry % 6.92 7.68 8.11 N dry % 1.38 1.28 1.22 S dry % 0.11 0.11 0.11 C l dry % 0.70 1.10 1.36 O dry % 40.12 34.70 31.59 合計 dry % 100.00 100.00 100.00 可燃分の低位発熱量		可添力の位性発動	(kcal/kg)		(4,665)		(5,314)		
可燃分の元素組成比率(推定) 低質ごみ 基準ごみ 高質ごみ C dry % 50.77 55.14 57.62 H dry % 6.92 7.68 8.11 N dry % 1.38 1.28 1.22 S dry % 0.11 0.11 0.11 C I dry % 0.70 1.10 1.36 O dry % 40.12 34.70 31.59 合計 dry % 100.00 100.00 100.00		単位容積重量			170		165		
C dry % 50.77 55.14 57.62 H dry % 6.92 7.68 8.11 N dry % 1.38 1.28 1.22 S dry % 0.11 0.11 0.11 C I dry % 0.70 1.10 1.36 O dry % 40.12 34.70 31.59 合計 dry % 100.00 100.00 100.00		可燃分の元素組成比		低質ごみ	基準ごみ	高質ごみ			
N dry % 1,38 1,28 1,22 S dry % 0.11 0.11 0.11 C I dry % 0.70 1.10 1,36 O dry % 40.12 34.70 31.59 合計 dry % 100.00 100.00 100.00					55.14	57.62			
S dry % 0.11 0.11 0.11 0.11 C l dry % 0.70 1.10 1.36 O dry % 40.12 34.70 31.59 合計 dry % 100.00 100.00 100.00 可燃分の低位発熱量									
C I dry % 0.70 1.10 1.36 O dry % 40.12 34.70 31.59 合計 dry % 100.00 100.00 可燃分の低位発熱量									
合計		C 1	dry %	0.70	1.10	1.36			
可燃分の低位発熱量									
			ary %	100,00	100,00	100,00			
			kJ/kg	19,508	22,250	23,810			

添付資料5-3 各シナリオの加重平均処理算出結果【ケース2:平常時】

一* つ, 壬壬 坐エ			低質	ごみ	基準	ごみ	高質	ごみ
ごみ種類	項目		各対象物のごみ質	加重平均值	各対象物のごみ質	加重平均值	各対象物のごみ質	加重平均值
可燃ごみ質	低位発熱量	kJ/kg	7,100		8,800		10,600	
		(kcal/kg)	(1,700)		(2,100)		(2,530)	
#0.1.m.	三成分	水分	51.9	48.7	46.2	43.4	40.5	38.0
搬出割合(温) 93.82%		可燃分 灰分	41.1 7.0	38.5 6.6	46.7 7.0	43.8 6.5	52.4 7.1	49.2 6.7
排出割合(可燃分)	可燃分の低位発熱量	- 灰刀 kJ/kg	20,512	19,491	21,299	19,066	22,148	20,055
89.52%		(kcal/kg)	(4,900)	(4,656)	(5,088)	(4,555)	(5,291)	(4,791)
軽量残渣ごみ質	低位発熱量	kJ/kg	19,400	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	19,400	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	19,400	(1),101/
		(kcal/kg)	(4,630)		(4,630)		(4,630)	
	三成分	水分	1.3	0.0	1.3	0.0	1.3	0.0
搬出割合(湿)		可燃分	50.5	0.7	50.5	0.7	50.5	0.7
1.41% 排出割合 (可燃分)	可燃分の低位発熱量	灰分 kJ/kg	48.2 38,445	<u>0.7</u> 674	48.2 38,445	0,7 558	48.2 38,445	0.7 503
排出部日(可然力) 1.45%	ったシングでは元代里	(kcal/kg)	(9,184)	(161)	(9,184)	(133)	(9,184)	(120)
プラスチックごみ質	低位発熱量	kJ/kg	36,100	(101)	36,100	(100)	36,100	, , 20)
		(kcal/kg)	(8,620)		(8,620)		(8,620)	
	三成分	水分	4.9	0.2	4.9	0.2	4.9	0.2
搬出割合(湿)		可燃分	92.7	4.4	92.7	4.4	92.7	4.4
4.77% 排出割合 (可燃分)	 可燃分の低位発熱量	灰分 kJ/kg	2.4 39,060	0,1 1,258	2.4 39.060	<u>0.1</u> 3,528	2.4 39,060	<u>0.1</u> 3,181
9.03%		(kcal/kg)	(9,331)	(300)	(9,331)	(843)	(9,331)	(760)
全体	低位発熱量	kJ/kg	10,00 17	8,121	(0,00 17	10,243	(0,00 17	11,930
(加重平均処理)	2004/2000000000000000000000000000000000	(kcal/kg)		(1,940)		(2,447)		(2,850)
	三成分	水分		49.0		43.6		38.2
搬出割合(湿)		可燃分		43.7		49.0		54.3
100.00% 排出割合 (可燃分)	可燃分の低位発熱量	灰分 kJ/kg		7 <u>.4</u> 21,423		7.3 23,152		7.5 23,739
100.00%		(kcal/kg)		(5,118)		(5,531)		(5,671)
計画ごみ質(ケース2		(11221)	低質		基準		高質	
可画にの貝(グースと	・平市时/	1 1/1	貝型		基 华		同貝	
	低位発熱量	kJ/kg		6,300		10,200		14,100
		(kcal/kg)		(1,500)		(2,440)		(3,370)
		水分		54.2		43.7		32.1
発熱比=2.25と	三成分	可燃分		38,5		49.0		60,4
なるよう各パラ メータを補正		灰分		7.3		7.4		7.5
. J C110IE		kJ/kg		19,845		23,099		24,691
	可燃分の低位発熱量	(kcal/kg)		(4,741)		(5,518)		(5,898)
	出片索廷素具	kg/m ³		180				
	単位容積重量					170		155
	可燃分の元素組成比		低質ごみ	基準ごみ	高質ごみ			
	C H	dry % dry %	51.28 7.01	56.51 7.92	59.06 8.36			
	N	dry %	1.37	1.92	1.18			
	S	dry %	0.11	0.11	0.11			
	C 1	dry %	0.70	1.24	1.51			
	Ο	dry %	39.53	32.98	29.78			
	合計	dry %	100.00	100,00	100,00			
	可燃分の低位発熱量	1. 170	10000	00444	04747			
	(参考値)	kJ/kg	19,826	23,111	24,717			

添付資料5-3 各シナリオの加重平均処理算出結果【ケース2:災害時】

ごみ種類	項目		低質		基準		高質	
この 性親	^ -		各対象物のごみ質	加重平均值		加重平均值	各対象物のごみ質	加重平均值
可燃ごみ質	低位発熱量	kJ/kg	7,100		8,800		10,600	
	二代公	(kcal/kg)	(1,700)	125	(2,100)	207	(2,530)	220
搬出割合(湿)	三成分	水分 可燃分	51.9 41.1	43.5 34.4	46.2 46.7	38.7 39.2	40.5 52.4	33.9 43.9
83.83%		灰分	7.0	5.9	7.0	5.8	7.1	5.9
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	20,512	19,056	21,299	16,435	22,148	17,525
77.16%		(kcal/kg)	(4,900)	(4,552)	(5,088)	(3,926)	(5,291)	(4,186)
軽量残渣ごみ質	低位発熱量	kJ/kg	19,400		19,400		19,400	
	三成分	(kcal/kg) 水分	(4,630)	0.0	(4,630)	0.0	(4,630)	0.0
搬出割合(湿)	二风刀	可燃分	1.3 50.5	0.6	1.3 50.5	0.0	1.3 50.5	0.0
1.26%		灰分	48.2	0.6	48.2	0.6	48.2	0.6
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	38,445	659	38,445	481	38,445	440
1.25%		(kcal/kg)	(9,184)	(157)	(9,184)	(115)	(9,184)	(105)
災害廃棄物ごみ質	低位発熱量	kJ/kg	10,400		10,400		10,400	
		(kcal/kg) 水分	(2,490) 30.1	3.2	(2,490)	3.2	(2,490) 30.1	3.2
搬出割合(湿)	<u> </u>	可燃分	65.8	7.0	65.8	7.0	65.8	7.0
10.65%		灰分	4.1	0.4	4.1	0.4	4.1	0.4
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	16,991	380	16,991	2,345	16,991	2,143
13.80%	let 14 30 ++ =	(kcal/kg)	(4,059)	(91)	(4,059)	(560)	(4,059)	(512)
プラスチックごみ質	低位発熱量	kJ/kg	36,100		36,100		36,100	
	三成分	(kcal/kg) 水分	(8,620) 4.9	0.2	(8,620) 4.9	0.2	(8,620) 4.9	0.2
搬出割合(湿)	_18(2)	可燃分	92.7	3.9	92.7	3.9	92,7	3.9
4.26%		灰分	2.4	0.1	2.4	0.1	2.4	0.1
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	39,060	1,230	39,060	3,041	39,060	2,780
7.79%	IT IL 7V. ± 1 ==	(kcal/kg)	(9,331)	(294)	(9,331)	(726)	(9,331)	(664)
全体	低位発熱量	kJ/kg (kcal/kg)		8,632 (2,062)		10,260 (2,451)		11,771
(加重平均処理)	三成分	水分		47.0		42.2		(2,812) 37,4
搬出割合(湿)	_18(2)	可燃分		46.0		50.8		55.5
100.00%		灰分		7.0		7.0		7.1
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg		21,324		22,302		22,888
100.00%		(kcal/kg)		(5,094)		(5,328)		(5,468)
計画ごみ質(ケース2	: 災害時)		低質	ごみ	基準	ごみ	高質	ごみ
	低位発熱量	kJ/kg		6,300		10,300		14,300
	四四元於里	(kcal/kg)		(1,500)		(2,460)		(3,420)
		水分		54.1		42.2		29.6
発熱比=2.25と	三成分	可燃分	l	38.9	1000	50.8	() () () () () () () () () ()	63,2
なるよう各パラ メータを補正		灰分		7.0		7.0		7.2
, J C110H		kJ/kg		19,635		22,374		23,829
	可燃分の低位発熱量	(kcal/kg)		(4,690)		(5,345)		(5,692)
	単位容積重量	kg/m ³		175		170		160
		1 (111)	1年版 一つ。		古庭 ごっ.	1 7 O		100
	可燃分の元素組成比 C	<u> </u>	<u>低質ごみ</u> 50.95	<u>基準ごみ</u> 55.35	高質ごみ 57.68			
	Н	dry %	6.95	7.71	8.12			
	N	dry %	1.38	1.27	1.21			
	S	dry %	0.11	0.11	0.11			
	C 1	dry %	0.70	1.12	1.36			
	O 合計	dry % dry %	39.91 100.00	34.44 100.00	31.51 100.00			
	可燃分の低位発熱量	UI Y 70	100,00	100,00	100,00			
	(参考値)	kJ/kg	19,618	22,381	23,848			
						•		

添付資料5-3 各シナリオの加重平均処理算出結果【ケース3:平常時】

ごみ種類	項目		低質			ごみ	高質	
			各対象物のごみ質	加重平均值	各対象物のごみ質	加重平均值	各対象物のごみ質	加重平均值
可燃ごみ質	低位発熱量	kJ/kg (kcal/kg)	7,100		8,800 (2,100)		10,600	
		水分	51.9	49.8	46.2	44.4	40.5	38.9
搬出割合(湿)		可燃分	41.1	39.4	46.7	44.8	52.4	50.3
95.98%		灰分	7.0	6.7	7.0	6.7	7.1	6.8
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	20,512	19,491	21,299	19,914	22,148	20,856
93.50%	低位発熱量	(kcal/kg) kJ/kg	(4,900) 19,400	(4,656)	(5,088) 19,400	(4,757)	(5,291) 19,400	(4,982)
軽量残渣ごみ質	12112光秋里	(kcal/kg)	(4,630)		(4,630)		(4,630)	
	三成分	水分	1.3	0.0	1.3	0.0	1.3	0.0
搬出割合(湿)		可燃分	50.5	0.7	50.5	0.7	50.5	0.7
1.44%		灰分	48.2	0.7	48.2	0.7	48.2	0.7
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	38,445	674	38,445	583	38,445	523
<u>1.52%</u> プラスチックごみ質	低位発熱量	(kcal/kg) kJ/kg	(9,184) 36,100	(161)	(9,184) 36,100	(139)	(9,184) 36,100	(125)
ノラスナックに砂貝	心心尤然里	(kcal/kg)	(8,620)		(8,620)		(8,620)	
	三成分	水分	4.9	0.1	4.9	0.1	4.9	0.1
搬出割合(湿)		可燃分	92.7	2.4	92.7	2.4	92.7	2.4
2.58%	7 100 () o 15 (+ 2) + 1 = 1	灰分	2.4	0.1	2.4	0.1	2.4	0.1
排出割合(可燃分) 4.99%	可燃分の低位発熱量	kJ/kg (kcal/kg)	39,060 (9,331)	1,258 (300)	39,060 (9,331)	1,947 (465)	39,060 (9,331)	1,748 (418)
全体	低位発熱量	kJ/kg	(9,551)	7,853	(9,331)	9,645	(9,331)	11,373
(加重平均処理)	四位元二	(kcal/kg)		(1,876)		(2,304)		(2,717)
	三成分	水分		50.0		44.5		39.0
搬出割合(湿)		可燃分		42.5		48.0		53.4
100.00%		灰分		7.5		7.4		7.6
排出割合(可燃分) 100.00%	可燃分の低位発熱量	kJ/kg (kcal/kg)		21,423 (5,118)		22,444 (5,362)		23,127 (5,525)
	=	(NCal/NS)	1		4-6.544			
計画ごみ質(ケース3	: 平常時)		低質			ごみ	高質	
	低位発熱量	kJ/kg		5,900		9,600		13,300
		(kcal/kg)		(1,410)		(2,290)		(3,180)
		水分		56.1		44.5		33.0
発熱比=2.25と	三成分	可燃分		36,5		48.1		59.4
なるよう各パラ メータを補正		灰分		7.4		7.5		7.6
) Chim		kJ/kg		20,031		22,270		23,806
	可燃分の低位発熱量	(kcal/kg)		(4,785)		(5,320)		(5,687)
	単位容積重量	kg/m ³		205		190		175
	可燃分の元素組成比		低質ごみ	基準ごみ	高質ごみ			
	C	dry %	51.58	55.18	57.64			
	Н	dry %	7.06	7.69	8.11			
	N	dry %	1.36	1.27	1.21			
	S C1	dry %	0.11	0.11	0.11			
	0	dry % dry %	0.73 39.16	1.10 34.65	1.36 31.56			
	合計	dry %	100.00	100.00	100.00			
	可燃分の低位発熱量							
	(参考値)	kJ/kg	20,012	22,275	23,824			

添付資料5-3 各シナリオの加重平均処理算出結果【ケース3:災害時】

ごみ種類	項目		低質	,		ごみ	高質	
			各対象物のごみ質	加重平均值	各対象物のごみ質	加重平均值	各対象物のごみ質	加重平均值
可燃ごみ質	低位発熱量	kJ/kg (kcal/kg)	7,100		8,800 (2,100)		10,600	
	三成分	水分	51.9	44.4	46.2	39.5	40.5	34.6
搬出割合(湿)		可燃分	41.1	35.1	46.7	40.0	52.4	44.8
85.55%		灰分	7.0	6.0	7.0	6,0	7.1	6.1
排出割合(可燃分) 80.10%	可燃分の低位発熱量	kJ/kg (kcal/kg)	20,512 (4,900)	19,056 (4,552)	21,299 (5,088)	17,061 (4,076)	22,148 (5,291)	18,133 (4,332)
軽量残渣ごみ質	低位発熱量	kJ/kg	19,400	(1,002/	19,400	(1,010/	19,400	(1,002)
	— - 1	(kcal/kg)	(4,630)		(4,630)		(4,630)	
搬出割合(湯)	三成分	水分 可燃分	1.3 50.5	0.0 0.6	1.3 50.5	0.0 0.6	1.3 50.5	0.0 0.6
版正剖古(油)		灰分	48.2	0.6	48.2	0.6	48.2	0.6
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	38,445	659	38,445	499	38,445	455
1.30%		(kcal/kg)	(9,184)	(157)	(9,184)	(119)	(9,184)	(109)
災害廃棄物ごみ質	低位発熱量	kJ/kg	10,400		10,400		10,400	
	— <u>-</u>	(kcal/kg)	(2,490)		(2,490)		(2,490)	
	三成分	水分	30.1	3.3	30.1	3.3	30.1	3.3
搬出割合(湿) 10.86%		可燃分 灰分	65.8 4.1	7.1 0.4	65.8 4.1	7.1 0.4	65.8 4.1	7.1 0.4
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	16,991	380	16,991	2,434	16,991	2,218
14.33%	5/11/20 *2 四 四 / 0 / 11 里	(kcal/kg)	(4,059)	(91)	(4,059)	(582)	(4,059)	(530)
プラスチックごみ質	低位発熱量	kJ/kg	36,100	/	36,100		36,100	
		(kcal/kg)	(8,620)		(8,620)		(8,620)	
Mariania (CD)	三成分	水分	4.9	0.1	4.9	0.1	4.9	0.1
搬出割合(温) 2.30%		可燃分 灰分	92.7 2.4	2.1 0.1	92.7 2.4	2.1 0.1	92.7 2.4	2.1 0.1
排出割合(可燃分)	可燃分の低位発熱量	以力 kJ/kg	39,060	1,230	39,060	1,668	39,060	1,520
4.27%	ラかいノンマンドグログノロが代里	(kcal/kg)	(9,331)	(294)	(9,331)	(399)	(9,331)	(363)
全体	低位発熱量	kJ/kg		8,401		9,728		11,269
(加重平均処理)		(kcal/kg)		(2,007)		(2,324)		(2,692)
140.1.451 A (VD)	三成分	水分		47.8		42.9		38.0
搬出割合(温) 99.99%		可燃分 灰分		45.0 7.1		49.9 7.1		54.8 7.2
排出割合(可燃分)	可燃分の低位発熱量	火力 kJ/kg		21,324		21,663		22,326
100.00%	うがバノコマンドロロノロが代里	(kcal/kg)		(5,094)		(5,175)		(5,333)
計画ごみ質(ケース3	:災害時)		低質	ごみ	基準	ごみ	高質	ごみ
	IT I 3V. ±+ =	kJ/kg		6,000		9,700		13,400
	低位発熱量	(kcal/kg)		(1,430)		(2,320)		(3,200)
		水分		56.1		42.9		30,8
発熱比=2.25と	三成分	可燃分		36.9		49.9		62.0
なるよう各パラ メータを補正		灰分	00000000 yamaaaaaaaaaaaaaaaaaaaaa	7.0	2003 2000000000000 20000000000000000000	7.2		7.2
	コ牌ハのにはなまっ	kJ/kg		20,041		21,629		22,853
	可燃分の低位発熱量	(kcal/kg)		(4,788)		(5,167)		(5,459)
	単位容積重量	kg/m ³		195		185		175
1	可燃分の元素組成比		低質ごみ	基準ごみ	高質ごみ			
	C	dry %	51.60	54.15	56.11			
	Н	dry %	7.07	7.51	7.85			
	N	dry %	1.36	1.30	1.25			
	S C1	dry % dry %	0.11	0.11	0.11			
	i t. l	arv %	0.73	1.00	1.20			
l i								
	〇 合計	dry % dry %	39.13 100.00	35.94 100.00	33.48 100.00			

添付資料5-3 各シナリオの加重平均処理算出結果【ケース4:平常時】

—*¬, ≠≠±±			低質	ごみ	基準	ごみ	高質	ごみ
ごみ種類	項目		各対象物のごみ質	加重平均值	各対象物のごみ質	加重平均值	各対象物のごみ質	加重平均值
可燃ごみ質	低位発熱量	kJ/kg	7,100		8,800		10,600	
		(kcal/kg)	(1,700)		(2,100)		(2,530)	
Hartisti A. COD	三成分	水分	51.9	50.6	46.2	45.1	40.5	39.5
搬出割合(湿) 97.49%		可燃分 灰分	41.1 7.0	40.0 6.8	46.7 7.0	45.5 6.8	52.4 7.1	51.1 6.9
排出割合(可燃分)	可燃分の低位発熱量	火力 kJ/kg	20,512	19,491	21,299	20,527	22,148	21,430
96.37%		(kcal/kg)	(4,900)	(4,656)	(5,088)	(4,904)	(5,291)	(5,119)
軽量残渣ごみ質	低位発熱量	kJ/kg	19,400	(1,000	19,400	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	19,400	(0)
		(kcal/kg)	(4,630)	,	(4,630)		(4,630)	
	三成分	水分	1.3	0.0	1.3	0.0	1.3	0.0
搬出割合(湿)		可燃分	50.5	0.7	50.5	0.7	50.5	0.7
1.46% 排出割合 (可燃分)	可燃分の低位発熱量	灰分 kJ/kg	48.2 38,445	0.7 674	48.2 38,445	<u>0,7</u> 601	48.2 38,445	0.7 538
1.56%	ったシングでは元代里	(kcal/kg)	(9,184)	(161)	(9,184)	(144)	(9,184)	(128)
プラスチックごみ質	低位発熱量	kJ/kg	36,100	(101/	36,100	(1.17	36,100	, , 20/
		(kcal/kg)	(8,620)		(8,620)		(8,620)	
	三成分	水分	4.9	0.1	4.9	0.1	4.9	0.1
搬出割合(湿)		可燃分	92.7	1.0	92.7	1.0	92.7	1.0
1.05% 排出割合 (可燃分)	 可燃分の低位発熱量	灰分 kJ/kg	2.4 39,060	0 <u>.0</u> 1,258	2.4 39.060	0.0 805	2.4 39,060	<u>0.0</u> 721
7.06%		(kcal/kg)	(9,331)	(300)	(9,331)	(192)	(9,331)	(172)
全体	低位発熱量	kJ/kg	10,00 17	7,665	(0,00 17	9,230	(0,00 17	10,988
(加重平均処理)	2004/2000000000000000000000000000000000	(kcal/kg)		(1,831)		(2,205)		(2,625)
	三成分	水分		50.7		45.1		39.5
搬出割合(湿)		可燃分		41.7		47.3		52.8
100.00% 排出割合 (可燃分)	可燃分の低位発熱量	灰分 kJ/kg		7 <u>.6</u> 21,423		7.5 21,933		7 <u>.6</u> 22,688
100.00%		(kcal/kg)		(5,118)		(5,240)		(5,420)
計画ごみ質(ケース4			低質		基準		高質	
司画にの貝(クース4	・ 平市时/	1. 1.71	貝型		基 华		同貝	
	低位発熱量	kJ/kg		5,700		9,200		12,700
		(kcal/kg)		(1,360)		(2,200)		(3,030)
		水分		57.3		45.1		33,8
発熱比=2.25と	三成分	可燃分		35,2		47.3		58.5
なるよう各パラ メータを補正		灰分		7.5		7.6		7.7
. J C1.01E		kJ/kg		20,262		21,885		23,133
	可燃分の低位発熱量	(kcal/kg)		(4,840)		(5,228)		(5,526)
	出片索廷素具	kg/m ³		225		205		
	単位容積重量					205		190
	可燃分の元素組成比		低質ごみ	基準ごみ	高質ごみ			
	C H	dry % dry %	51.95 7.13	54.56 7.58	56.56 7.93			
	N	dry %	1.35	1.29	1.24			
	S	dry %	0.11	0.11	0.11			
	C 1	dry %	0.77	1.04	1.25			
	0	dry %	38.69	35.42	32.91			
	合計	dry %	100,00	100,00	100.00			
	可燃分の低位発熱量	1, 1/1, ~	20.254	01 006	22146			
	(参考値)	kJ/kg	20,251	21,886	23,146			

添付資料5-3 各シナリオの加重平均処理算出結果【ケース4:災害時】

ごみ種類	項目			ごみ		ごみ	高質	
			各対象物のごみ質	加重平均值	各対象物のごみ質	加重平均值	各対象物のごみ質	加重平均值
可燃ごみ質	低位発熱量	kJ/kg (kcal/kg)	7,100		8,800 (2,100)		10,600	
	三成分	水分	51.9	45.0	46.2	40.1	40.5	35.1
搬出割合(湿)		可燃分	41.1	35.6	46.7	40.5	52.4	45.5
86.75%	7 lb /) a / (1 2 2 1 1 1	灰分	7.0	6.1	7.0	6.0	7.1	6.2
排出割合(可燃分) 82.21%	可燃分の低位発熱量	kJ/kg (kcal/kg)	20,512 (4,900)	19,056 (4,552)	21,299 (5,088)	17,509 (4,183)	22,148 (5,291)	18,566 (4,435)
軽量残渣ごみ質	低位発熱量	kJ/kg	19,400	, = = =	19,400	, . = = ,	19,400	, ,
	三成分	(kcal/kg) 水分	(4,630) 1.3	0.0	(4,630) 1.3	0.0	(4,630) 1.3	0.0
搬出割合(湿)	二成刀	可燃分	50.5	0.0	50.5	0.0	50.5	0.0
1.30%		灰分	48.2	0.6	48.2	0.6	48.2	0.6
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	38,445	659	38,445	513	38,445	466
1.33%	(C) 1 75 +4 (C)	(kcal/kg)	(9,184)	(157)	(9,184)	(122)	(9,184)	(111)
災害廃棄物ごみ質	低位発熱量	kJ/kg (kcal/kg)	10,400		10,400		10,400 (2,490)	
	三成分	水分	30.1	3.3	30.1	3.3	30.1	3.3
搬出割合(湿)		可燃分	65.8	7.3	65.8	7.3	65.8	7.3
11.02%	コ雌ハのにはなまっ	灰分	4.1	0.5	4.1	0.5	4.1	0.5
排出割合(可燃分) 14,70%	可燃分の低位発熱量	kJ/kg (kcal/kg)	16,991 (4,059)	380 (91)	16,991 (4,059)	2,498 (597)	16,991 (4,059)	2,271 (542)
プラスチックごみ質	低位発熱量	kJ/kg	36,100	(91)	36,100	(391)	36,100	(042)
ノンハナランこの貝	12 122 0 /M ==	(kcal/kg)	(8,620)		(8,620)		(8,620)	
	三成分	水分	4.9	0.0	4.9	0.0	4.9	0.0
搬出割合(湿)		可燃分	92.7	0.9	92.7	0.9	92.7	0.9
0.94% 排出割合 (可燃分)	回燃分の低位発熱量	灰分 kJ/kg	2.4 39,060	0.0 1,230	39,060	0 <u>.0</u> 687	2.4 39,060	0 <u>.0</u> 624
1.76%	可然为少区位先然里	(kcal/kg)	(9,331)	(294)	(9,331)	(164)	(9,331)	(149)
全体	低位発熱量	kJ/kg	(0,001,	8,251	(0)001/	9,364	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10,926
(加重平均処理)		(kcal/kg)		(1,971)		(2,237)		(2,610)
	三成分	水分		48.4		43.5		38.5
搬出割合(湿) 100.01%		可燃分 灰分		44.4 7.2		49.3 7.1		54.2 7.3
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg		21,324		21,206		21,927
100.00%	3////3 3 12 12 3/// 2	(kcal/kg)		(5,094)		(5,066)		(5,238)
計画ごみ質(ケース4	:災害時)		低質	ごみ	基準	ごみ	高質	ごみ
	低位発熱量	kJ/kg		5,800		9,400		13,000
	四世元杰里	(kcal/kg)		(1,390)		(2,250)		(3,110)
		水分		57,4		43.5		30.7
発熱比=2.25と なるよう各パラ	三成分	可燃分		35,4		49.3		61.9
メータを補正		灰分		7.2		7.2		7.4
	可燃分の低位発熱量	kJ/kg		20,509		21,315		22,277
	の際というとは出れる	(kcal/kg)		(4,899)		(5,092)		(5,322)
	単位容積重量	kg/m ³		215		200		185
	可燃分の元素組成比		低質ごみ	基準ごみ	高質ごみ			
	0:	dry %	52.35	53.64	55.19			
	Н	dry %	7.20	7.42	7.69			
	N S	dry % dry %	1.34 0.11	1.31 0.11	1.27 0.11			
	C 1	dry %	0.11	0.11	1.11			
	0	dry %	38.19	36.57	34.63			
	合計	dry %	100,00	100,00	100,00			
	可燃分の低位発熱量 (参考値)	kJ/kg	20,503	21,312	22,283			
	(麥夸胆)	KJ/Kg	20,503	21,312	22,283	J		

添付資料5-3 各シナリオの加重平均処理算出結果【ケース5:平常時】

一*フェ 任手半五	西 □		低質	ごみ	基準	ごみ	高質	ごみ
ごみ種類	項目		各対象物のごみ質	加重平均值	各対象物のごみ質	加重平均值	各対象物のごみ質	加重平均值
可燃ごみ質	低位発熱量	kJ/kg	7,100		8,800		10,600	
		(kcal/kg)	(1,700)		(2,100)		(2,530)	
	三成分	水分	51.9	50.3	46.2	44.8	40.5	39.3
搬出割合(湿) 96.94%		可燃分 灰分	41.1 7.0	39.8 6.8	46.7 7.0	45.3 6.7	52.4 7.1	50.8 6.9
排出割合(可燃分)	可燃分の低位発熱量	- 灰刀 kJ/kg	20,512	19,491	21,299	20,301	22,148	21,218
95.31%	りが、力の反応元が重	(kcal/kg)	(4,900)	(4,656)	(5,088)	(4,850)	(5,291)	(5,069)
軽量残渣ごみ質	低位発熱量	kJ/kg	19,400	(1,000)	19,400	(1,000)	19,400	(0,000)
		(kcal/kg)	(4,630)		(4,630)		(4,630)	
	三成分	水分	1.3	O.O	1.3	0.0	1.3	0.0
搬出割合(湿)		可燃分	50.5	0.7	50.5	0.7	50.5	0.7
1.45%	コルハのバトがむョ	灰分	48.2	0.7	48.2	0.7	48.2	0.7
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg (kcal/kg)	38,445 (9,184)	674	38,445 (9,184)	594 (142)	38,445 (9,184)	532 (127)
<u>1.55%</u> プラスチックごみ質	低位発熱量	kJ/kg	36,100	(161)	36,100	(142)	36,100	(121)
ノフベナフノこの質	E III / Limine	(kcal/kg)	(8,620)		(8,620)		(8,620)	
	三成分	水分	4.9	0.1	4.9	0.1	4.9	0.1
搬出割合(湿)		可燃分	92.7	1.5	92.7	1.5	92.7	1.5
1.61%		灰分	2.4	0,0	2.4	0,0	2.4	0.0
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	39,060	1,258	39,060	1,227	39,060	1,099
3.14%	バルシャー	(kcal/kg)	(9,331)	(300)	(9,331)	(293)	(9,331)	(263)
全体 (加重平均処理)	低位発熱量	kJ/kg (kcal/kg)		7,736 (1,848)		9,385 (2,242)		11,131 (2,659)
(加里平均处理)	三成分	水分		50.4	***************************************	44.9		39.4
搬出割合(湿)	_18/2	可燃分		42.0		47.5		53.0
100.00%		灰分		7.5		7.5		7.6
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg		21,423		22,121		22,850
100.00%		(kcal/kg)		(5,118)		(5,285)		(5,459)
計画ごみ質(ケース5	: 平常時)		低質	ごみ	基準	ごみ	高質	ごみ
		kJ/kg		5,800		9,400		13,000
	低位発熱量	(kcal/kg)		(1,390)		(2,250)		(3,110)
		水分		56.7		44.9		33,2
発熱比=2.25と	三成分	可燃分			turi con	44.9 47.5		
なるよう各パラ	-12/2			35.8				59 <u>.</u> 2
メータを補正		灰分		7.5		7.6		7.6
	可燃分の低位発熱量	kJ/kg		20,231		22,194		23,399
	5/M/5-7 12 12/ 5/M =	(kcal/kg)		(4,833)		(5,302)		(5,590)
	単位容積重量	kg/m ³		215		200		185
	可燃分の元素組成比	率(推定)	低質ごみ	基準ごみ	高質ごみ			
	С	dry %	51.90	55.06	56.99			
	Н	dry %	7.12	7.66	8.00			
	N	dry %	1.35	1.28	1.23			
	S	dry %	0.11	0.11	0.11			
	C I	dry %	0.76	1.09	1.29			
	O 合計	dry % dry %	38.76 100.00	34.80 100.00	32,38 100,00			
	可燃分の低位発熱量	GLY /0	100,00	100,00	100,00			
	(参考値)	kJ/kg	20,218	22,199	23,415			

添付資料5-3 各シナリオの加重平均処理算出結果【ケース5:災害時】

ごみ種類	话口		低質ごみ			基準ごみ		高質ごみ	
しの悝規	項目		各対象物のごみ質	加重平均值		加重平均值	各対象物のごみ質	加重平均值	
可燃ごみ質	低位発熱量	kJ/kg	7,100		8,800		10,600		
	— <u>+</u> /\	(kcal/kg)	(1,700)	440	(2,100)	200	(2,530)	240	
搬出割合(湿)	三成分	水分 可燃分	51.9 41.1	44.8 35.4	46.2 46.7	39.9 40.3	40.5 52.4	34.9 45.2	
版正訂二(温) 86.31%		灰分	7.0	6.1	7.0	6.0	7.1	6.1	
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	20,512	19,056	21,299	17,344	22,148	18,407	
81.43%		(kcal/kg)	(4,900)	(4,552)	(5,088)	(4,143)	(5,291)	(4,397)	
軽量残渣ごみ質	低位発熱量	kJ/kg	19,400		19,400		19,400		
	— - 1	(kcal/kg)	(4,630)		(4,630)		(4,630)		
	三成分	水分 可燃分	1.3 50.5	0.0 0.7	1.3 50.5	0.0 0.7	1.3 50.5	0.0 0.7	
搬出割合(湿) 1.29%		灰分	48.2	0.7	48.2	0.7	48.2	0.7	
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	38,445	659	38,445	508	38,445	462	
1.32%		(kcal/kg)	(9,184)	(157)	(9,184)	(121)	(9,184)	(110)	
災害廃棄物ごみ質	低位発熱量	kJ/kg	10,400		10,400		10,400		
		(kcal/kg)	(2,490)		(2,490)		(2,490)		
	三成分	水分	30.1	3.3	30.1	3.3	30.1	3.3	
搬出割合(湿) 10.96%		可燃分 灰分	65.8 4.1	7.2 0.4	65.8 4.1	7.2 0.4	65.8 4.1	7.2 0.4	
排出割合(可燃分)	可燃分の低位発熱量	以力 kJ/kg	16,991	380	16,991	2,475	16,991	2,251	
14.56%	うがいしいはに元が里	(kcal/kg)	(4,059)	(91)	(4,059)	(591)	(4,059)	(538)	
プラスチックごみ質	低位発熱量	kJ/kg	36,100	,5 17	36,100	,5517	36,100	.555/	
		(kcal/kg)	(8,620)		(8,620)		(8,620)		
	三成分	水分	4.9	0.1	4.9	0.1	4.9	0.1	
搬出割合(湿)		可燃分	92.7	1.3	92.7	1.3	92.7	1.3	
1.43% 排出割合 (可燃分)	可燃分の低位発熱量	灰分 kJ/kg	2.4 39.060	0 <u>.0</u> 1,230	2.4 39.060	0.0 1.048	2.4 39,060	<u>0.0</u> 953	
2.68%	可然为仍应应无然重	(kcal/kg)	(9,331)	(294)	(9,331)	(250)	(9,331)	(228)	
全体	低位発熱量	kJ/kg	(0,001)	8,305	(0,0017	9,494	\0,001/	11,051	
(加重平均処理)		(kcal/kg)		(1,984)		(2,268)		(2,640)	
	三成分	水分		48.2		43.3		38.3	
搬出割合(湿)		可燃分		44.6		49.5		54.4	
99.99%	回燃分の低位発熱量	灰分 kJ/kg		7,2 21,324		7.1 21,374		7 <u>.2</u> 22,074	
排出割合(可燃分) 100,00%	可燃力の心型光熱重	(kcal/kg)		(5,094)		(5,106)		(5,273)	
					基準ごみ				
計画ごみ質(ケース5	:災害時)	1 1/1	低質ごみ		= 1 = 7		高質ごみ		
	低位発熱量	kJ/kg		5,800		9,500		13,200	
		(kcal/kg)		(1,390)		(2,270)		(3,150)	
発熱比=2.25と	-	水分		57,2		43.3		30,6	
先然ルー2.25C なるよう各パラ	三成分	可燃分		35,7		49.5		62.0	
メータを補正		灰分		7.1		7.2		7.4	
	可憐ひの氏点な数=	kJ/kg]	20,323		21,387		22,507	
	可燃分の低位発熱量	(kcal/kg)		(4,855)		(5,109)		(5,377)	
	単位容積重量	kg/m ³		205		195		180	
	可燃分の元素組成比	1 (111)	低質ごみ	基準ごみ	高質ごみ		_		
	C	dry %	52.05	<u>本</u> 年この 53.76	55.56				
	H	dry %	7.14	7.44	7.75				
	N	dry %	1.35	1.31	1.27				
	S	dry %	0.11	0.11	0.11				
	C 1	dry %	0.78	0.96	1.14				
	O 合計	dry % dry %	38.57 100.00	36.43 100.00	34.17 100.00				
	回燃分の低位発熱量	UI Y 70	100,00	100,00	100,00				
	(参考値)	kJ/kg	20,306	21,384	22,515				
	,,_				,				

添付資料5-3 各シナリオの加重平均処理算出結果【ケース6:平常時】

—*7, <i>1</i> ∓±±	項目		低質ごみ		基準ごみ		高質ごみ	
ごみ種類			各対象物のごみ質	加重平均值	各対象物のごみ質	加重平均值	各対象物のごみ質	加重平均值
可燃ごみ質	低位発熱量	kJ/kg	7,100		8,800		10,600	
		(kcal/kg)	(1,700)		(2,100)		(2,530)	
####### A CON	三成分	水分	51.9	51.1	46.2	45.5	40.5	39.9
搬出割合(湿) 98.47%		可燃分 灰分	41.1 7.0	40.4 6.9	46.7 7.0	46.0 6.9	52.4 7.1	51.6 7.0
排出割合(可燃分)	可燃分の低位発熱量	- 灰刀 kJ/kg	20,512	19,491	21,299	20,938	22,148	21,813
98.30%	りが、力の反応元が重	(kcal/kg)	(4,900)	(4,656)	(5,088)	(5,002)	(5,291)	(5,211)
軽量残渣ごみ質	低位発熱量	kJ/kg	19,400	\ 1,000/	19,400	10,002	19,400	(0,211)
		(kcal/kg)	(4,630)		(4,630)		(4,630)	
	三成分	水分	1.3	O.O	1.3	0.0	1.3	O.O
搬出割合(湿)		可燃分	50.5	0.7	50.5	0.7	50.5	0.7
1.48% 排出割合 (可燃分)	回燃分の低位発熱量	灰分 kJ/kg	48.2 38,445	<u>0.7</u> 674	48.2 38,445	<u>0,7</u> 613	48.2 38,445	0.7 547
排出制造(切然力)	可燃力の心型光熱重	(kcal/kg)	(9,184)	(161)	(9,184)	(146)	(9,184)	(131)
プラスチックごみ質	低位発熱量	kJ/kg	36,100	(101)	36,100	(140)	36,100	(101)
		(kcal/kg)	(8,620)		(8,620)		(8,620)	
	三成分	水分	4.9	0,0	4.9	0,0	4.9	0,0
搬出割合(湿)		可燃分	92.7	0.0	92.7	0.0	92.7	0.0
0.05%	コ州へのによるまっ	灰分	2.4	0,0	2.4	0,0	2.4	0.0
排出割合(可燃分) 0.10%	可燃分の低位発熱量	kJ/kg (kcal/kg)	39,060 (9,331)	1,258 (300)	39,060 (9,331)	39	39,060 (9,331)	35 (8)
全体	低位発熱量	kJ/kg	(9,331)	7,547	(9,331)	8,962	(9,331)	10,733
(加重平均処理)		(kcal/kg)		(1,803)		(2,141)		(2,564)
(352) 153(2)	三成分	水分		51.2		45.5		39.9
搬出割合(湿)		可燃分		41.2		46.8		52.4
100.00%		灰分		7.6		7.6		7.7
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg		21,423		21,590		22,396
	100.00% (kcal/kg)		(5,118)		(5,158)		(5,350)	
計画ごみ質(ケース6	画ごみ質(ケース6:平常時)		低質ごみ		基準ごみ		高質ごみ	
	低位発熱量	kJ/kg		5,500		9,000		12,500
		(kcal/kg)		(1,310)		(2,150)		(2,990)
		水分		58.5		45.5		33.6
発熱比=2.25と	三成分	可燃分			46.8			
なるよう各パラ				34.0				<u>58.7</u>
メータを補正		灰分		7.5		7.6		7.7
	可燃分の低位発熱量	kJ/kg		20,450		21,675		22,760
	3////3 12 IL / 3/// L	(kcal/kg)		(4,885)		(5,178)		(5,437)
	単位容積重量	kg/m ³		240		220		200
	可燃分の元素組成比	率(推定)	低質ごみ	基準ごみ	高質ごみ			
	С	dry %	52,26	54.22	55.96			
	Н	dry %	7.18	7.52	7.82			
	N	dry %	1.35	1.30	1.26			
	S	dry %	0.11	0.11	0.11			
	C I	dry %	0.80 38.30	1.00 35.84	1.19 33.66			
	O 合計	dry % dry %	100.00	100.00	100.00			
	可燃分の低位発熱量	GI 3 70	100,00	100,00	100,00			
	(参考値)	kJ/kg	20,442	21,675	22,770			
		10/16	20,112	21,010				

添付資料5-3 各シナリオの加重平均処理算出結果【ケース6:災害時】

ごみ種類	項目			ごみ		ごみ	高質	
			各対象物のごみ質	加重平均值	各対象物のごみ質	加重平均值	各対象物のごみ質	加重平均值
可燃ごみ質	低位発熱量	kJ/kg (kcal/kg)	7,100		8,800 (2,100)		10,600	
	三成分	水分	51.9	45.5	46.2	40.4	40.5	35.4
搬出割合(湿)		可燃分	41.1	35.9	46.7	40.9	52.4	45.9
87.53%		灰分	7.0	6.1	7.0	6.1	7.1	6.2
排出割合(可燃分) 83.61%	可燃分の低位発熱量	kJ/kg (kcal/kg)	20,512 (4,900)	19,056 (4,552)	21,299 (5,088)	17,807 (4,254)	22,148 (5,291)	18,853 (4,504)
軽量残渣ごみ質	低位発熱量	kJ/kg	19,400	(1,002)	19,400	(1,201/	19,400	(1,00 1/
	— -	(kcal/kg)	(4,630)		(4,630)		(4,630)	
	三成分	水分 可燃分	1.3 50.5	0.0 0.7	1.3 50.5	0.0 0.7	1.3 50.5	0.0 0.7
搬出割合(温) 1.31%		灰分	48.2	0.7	48.2	0.7	48.2	0.7
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	38,445	659	38,445	521	38,445	473
1.36%		(kcal/kg)	(9,184)	(157)	(9,184)	(125)	(9,184)	(113)
災害廃棄物ごみ質	低位発熱量	kJ/kg	10,400		10,400		10,400	
	— -	(kcal/kg)	(2,490)		(2,490)		(2,490)	
加山東 今 (2月)	三成分	水分	30.1	3.3	30.1	3.3	30.1	3.3
搬出割合(湿) 11.11%		可燃分 灰分	65.8 4.1	7.3 0.5	65.8 4.1	7.3 0.5	65.8 4.1	7.3 0.5
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	16,991	380	16,991	2,541	16,991	2,306
14.95%		(kcal/kg)	(4,059)	(91)	(4,059)	(607)	(4,059)	(551)
プラスチックごみ質	低位発熱量	kJ/kg	36,100		36,100		36,100	
	一 本八	(kcal/kg)	(8,620)	~~	(8,620)	~~	(8,620)	
地にいずい会(2月)	三成分	水分	4.9	0.0	4.9	0.0	4.9	0.0
搬出割合(湿) 0.05%		可燃分 灰分	92.7 2.4	0.0	92.7 2.4	0.0	92.7 2.4	0.0 0.0
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg	39,060	1,230	39,060	33	39,060	30
0.09%		(kcal/kg)	(9,331)	(294)	(9,331)	(8)	(9,331)	(7)
全体	低位発熱量	kJ/kg		8,146		9,121		10,700
(加重平均処理)	— ₆	(kcal/kg)		(1,946)		(2,179)		(2,556)
搬出割合(湿)	三成分	水分 可燃分		48.8 44.0		43.8 48.9		38.8 53.9
加工部 (油)		灰分		7.2		7.2		7.3
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg		21,324	,	20,902		21,662
100.00%		(kcal/kg)		(5,094)		(4,993)		(5,175)
計画ごみ質(ケース6	:災害時)		低質		基準	ごみ	高質	
	低位発熱量	kJ/kg		5,600		9,100		12,600
	12112元於里	(kcal/kg)		(1,340)		(2,170)		(3,010)
		水分		58.8		43.8		31.3
発熱比=2.25と	三成分	可燃分		34.1		48.9		61,3
なるよう各パラ メータを補正		灰分		7.1	2003 / 000000000000000000000000000000000	7.3		7.4
	可憐ハのばは恋まっ	kJ/kg		20,780		20,821		21,837
	可燃分の低位発熱量	(kcal/kg)		(4,964)		(4,974)		(5,217)
	単位容積重量	kg/m ³		225		210		195
	可燃分の元素組成比		低質ごみ	基準ごみ	高質ごみ			
	C	dry %	52.79	52.85	54.48			
	H	dry %	7.27	7.28	7.57			
	N	dry %	1.33	1.33	1.29			
	S	dry %	0.11	0.11	0.11			
	C 1 O	dry % dry %	0.86 37.64	0.86 37.56	1.03 35.52			
	合計	dry %	100.00	100.00	100.00			
	可燃分の低位発熱量							
	(参考値)	kJ/kg	20,772	20,814	21,838	l		

添付資料5-3 各シナリオの加重平均処理算出結果【ケース7:平常時】

ごみ種類	項目			ごみ	基準		高質	
こ0万怪块				加重平均值		加重平均值	各対象物のごみ質	加重平均值
可燃ごみ質	低位発熱量	kJ/kg	7,100		8,800		10,600	
		(kcal/kg)	(1,700)		(2,100)		(2,530)	
Maritim A. (OD)	三成分	水分	51.9	51.2	46.2	45.5	40.5	39.9
搬出割合(湿) 98.52%		可燃分 灰分	41.1 7.0	40.4 6.9	46.7 7.0	46.0 6.9	52.4 7.1	51.6
排出割合(可燃分)	可燃分の低位発熱量	火力 kJ/kg	20,512	20,140	21,299	20,959	22,148	7.0 21,833
98.40%	りが、力の反応元が重	(kcal/kg)	(4,900)	(4,811)	(5,088)	(5,007)	(5,291)	(5,216
軽量残渣ごみ質	低位発熱量	kJ/kg	19,400	(1,011/	19,400	(0,001)	19,400	(0,210
		(kcal/kg)	(4,630)		(4,630)		(4,630)	
	三成分	水分	1.3	0.0	1.3	0.0	1.3	0.0
搬出割合(湿)		可燃分	50.5	0.7	50.5	0.7	50.5	0.7
1.48%	コ州ハのボトを勃見	灰分	48.2	0,7	48.2	0.7	48,2 38,445	0.7
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg (kcal/kg)	38,445 (9,184)	697	38,445 (9,184)	614 (147)	(9,184)	548 (131
<u>1.60%</u> 全体	低位発熱量	kJ/kg	(9,104)	(166) 7,296	(9,104)	8,946	(9,104)	10,720
(加重平均処理)	四世元杰里	(kcal/kg)		(1,743)		(2,137)		(2,561
(30至123之社)	三成分	水分		51.2		45.6		39.9
搬出割合(湿)		可燃分		41.2		46.8		52.4
100.00%		灰分		7,6	000 E000000000000000000000000000000000	7.7		7.7
排出割合(可燃分)	可燃分の低位発熱量	kJ/kg		20,837		21,572		22,381
100.00%		(kcal/kg)		(4,978)		(5,153)		(5,346
ニュエー・コンディント ママ			·		++ \			- "7.
計画ごみ質(ケース7	: 平常時)		低質	こみ	基準	しみ	高質	しみ
計画しみ質(ケー人)		kJ/kg	佐 質	<u>こみ</u> 5,500		<u>こみ</u> 8,900	高質	<i>ட்டு</i> 12,300
TI凹にみ質(ケー人)	: 平常時) 低位発熱量	kJ/kg (kcal/kg)	也 質					12,300
計画にみ質(ケー人)			仏質	5,500		8,900	高質 	12,300
発熱比=2.25と		(kcal/kg)	丛	5,500 (1,310)		8,900 (2,130)	高質 	12,300 (2,940 34.7
	低位発熱量	(kcal/kg) 水分	 	5,500 (1,310) 57.1		8,900 (2,130) 45.6	局質	12,300 (2,940 34.7 57.6
発熱比=2.25と なるよう各パラ	低位発熱量 三成分	(kcal/kg) 水分 可燃分		5,500 (1,310) 57.1 35,3		8,900 (2,130) 45.6 46.8	局質	12,300 (2,940 34.7 57.6
発熱比=2.25と なるよう各パラ	低位発熱量	(kcal/kg) 水分 可燃分 灰分 kJ/kg (kcal/kg)		5,500 (1,310) 57.1 35.3 7.6		8,900 (2,130) 45.6 46.8 7.7	局質	12,300 (2,940 34.7 57.6 7.7 22,879
発熱比=2.25と なるよう各パラ	低位発熱量 三成分	(kcal/kg) 水分 可燃分 灰分 kJ/kg		5,500 (1,310) 57.1 35,3 7.6 19,597	基準	8,900 (2,130) 45,6 46,8 7,7 21,504		
発熱比=2.25と なるよう各パラ	低位発熱量 三成分 可燃分の低位発熱量	(kcal/kg) 水分 可燃分 灰分 kJ/kg (kcal/kg) kg/m ³	低質ごみ	5,500 (1,310) 57.1 35.3 7.6 19,597 (4,682)	昼準	8,900 (2,130) 45.6 46.8 7.7 21,504 (5,137)		12,300 (2,940 34.7 57.6 7.7 22,879 (5,466
発熱比=2.25と なるよう各パラ	低位発熱量 三成分 可燃分の低位発熱量 単位容積重量 可燃分の元素組成比 C	(kcal/kg) 水分 可燃分 灰分 kJ/kg (kcal/kg) kg/m ³ 率(推定) dry %	低質ごみ 50.89	5,500 (1,310) 57,1 35,3 7,6 19,597 (4,682) 235 基準ごみ 53,95	高質ごみ 56.16	8,900 (2,130) 45.6 46.8 7.7 21,504 (5,137)		12,300 (2,940 34.7 57.6 7.7 22,879 (5,466
発熱比=2.25と なるよう各パラ	低位発熱量 三成分 可燃分の低位発熱量 単位容積重量 可燃分の元素組成比 C H	(kcal/kg) 水分 可燃分 灰分 kJ/kg (kcal/kg) kg/m³ 率(推定) dry% dry%	低質ごみ 50.89 6.94	5,500 (1,310) 57,1 35,3 7,6 19,597 (4,682) 235 基準ごみ 53,95 7,47	高質ごみ 56.16 7.85	8,900 (2,130) 45.6 46.8 7.7 21,504 (5,137)		12,300 (2,940 34.7 57.6 7.7 22,879 (5,466
発熱比=2.25と なるよう各パラ	低位発熱量 三成分 可燃分の低位発熱量 単位容積重量 可燃分の元素組成比 C H N	(kcal/kg) 水分 可燃分 灰分 kJ/kg (kcal/kg) kg/m³ 率(推定) dry % dry % dry %	低質ごみ 50.89 6.94 1.38	5,500 (1,310) 57,1 35,3 7,6 19,597 (4,682) 235 基準ごみ 53,95 7,47 1,30	高質ごみ 56.16 7.85 1.25	8,900 (2,130) 45.6 46.8 7.7 21,504 (5,137)		12,300 (2,940 34.7 57.6 7.7 22,879 (5,466
発熱比=2.25と なるよう各パラ	低位発熱量 三成分 可燃分の低位発熱量 単位容積重量 可燃分の元素組成比 C H N S	(kcal/kg) 水分 可燃分 灰分 kJ/kg (kcal/kg) kg/m³ 率 (推定) dry % dry % dry %	低質ごみ 50.89 6.94 1.38 0.11	5,500 (1,310) 57.1 35.3 7,6 19,597 (4,682) 235 基準ごみ 53,95 7,47 1,30 0,11	高質ごみ 56.16 7.85 1.25 0.11	8,900 (2,130) 45.6 46.8 7.7 21,504 (5,137)		12,300 (2,940 34.7 57.6 7.7 22,879 (5,466
発熱比=2.25と なるよう各パラ	低位発熱量 三成分 可燃分の低位発熱量 単位容積重量 可燃分の元素組成比 C H N S C 1	(kcal/kg) 水分 可燃分 灰分 kJ/kg (kcal/kg) kg/m³ 率 (推定) dry % dry % dry % dry % dry %	低質ごみ 50.89 6.94 1.38 0.11 0.70	5,500 (1,310) 57,1 35,3 7,6 19,597 (4,682) 235 基準ごみ 53,95 7,47 1,30 0,11 0,98	高質ごみ 56.16 7.85 1.25 0.11 1.21	8,900 (2,130) 45.6 46.8 7.7 21,504 (5,137)		12,300 (2,940 34.7 57.6 7.7 22,879 (5,466
発熱比=2.25と なるよう各パラ	低位発熱量 三成分 可燃分の低位発熱量 単位容積重量 可燃分の元素組成比 C H N S C I O	(kcal/kg) 水分 可燃分 灰分 kJ/kg (kcal/kg) kg/m³ 率 (推定) dry % dry % dry % dry % dry %	低質ごみ 50.89 6.94 1.38 0.11 0.70 39.98	5,500 (1,310) 57,1 35,3 7,6 19,597 (4,682) 235 基準ごみ 53,95 7,47 1,30 0,11 0,98 36,19	高質ごみ 56.16 7.85 1.25 0.11 1.21 33.42	8,900 (2,130) 45.6 46.8 7.7 21,504 (5,137)		12,300 (2,940 34.7 57.6 7.7 22,879 (5,466
発熱比=2.25と なるよう各パラ	低位発熱量 三成分 可燃分の低位発熱量 単位容積重量 可燃分の元素組成比 C H N S C 1	(kcal/kg) 水分 可燃分 灰分 kJ/kg (kcal/kg) kg/m³ 率 (推定) dry % dry % dry % dry % dry %	低質ごみ 50.89 6.94 1.38 0.11 0.70	5,500 (1,310) 57,1 35,3 7,6 19,597 (4,682) 235 基準ごみ 53,95 7,47 1,30 0,11 0,98	高質ごみ 56.16 7.85 1.25 0.11 1.21	8,900 (2,130) 45.6 46.8 7.7 21,504 (5,137)		12,300 (2,940 34.7 57.6 7.7 22,879 (5,466

添付資料5-3 各シナリオの加重平均処理算出結果【ケース7:災害時】

一* つ, 壬壬 坐エ	- T		低質	ごみ	基準	ごみ	高質	ごみ
ごみ種類	項目		各対象物のごみ質	加重平均值	各対象物のごみ質	加重平均值	各対象物のごみ質	加重平均值
可燃ごみ質	低位発熱量	kJ/kg	7,100		8,800		10,600	
		(kcal/kg)	(1,700)		(2,100)		(2,530)	
#0.1.m.	三成分	水分	51.9	45.5	46.2	40.5	40.5	35.5
搬出割合(湿) 87.57%		可燃分 灰分	41.1 7.0	35.9 6.1	46.7 7.0	40.9 6.1	52.4 7.1	45.9 6.2
排出割合(可燃分)	可燃分の低位発熱量	火力 kJ/kg	20,512	19,675	21,299	17,822	22,148	18,868
83.68%		(kcal/kg)	(4,900)	(4,700)	(5,088)	(4,257)	(5,291)	(4,507)
軽量残渣ごみ質	低位発熱量	kJ/kg	19,400	.,,	19,400	,	19,400	(1)0017
		(kcal/kg)	(4,630)		(4,630)		(4,630)	
	三成分	水分	1.3	0.0	1.3	0.0	1.3	0.0
搬出割合(湿)		可燃分	50.5	0.7	50.5	0.7	50.5	0.7
1.31% 排出割合 (可燃分)	可燃分の低位発熱量	灰分 kJ/kg	48.2 38,445	<u>0,6</u> 681	48.2 38,445	0,6 522	48.2 38,445	<u>0.6</u> 473
1.36%	ったシングでは元代里	(kcal/kg)	(9,184)	(163)	(9,184)	(125)	(9,184)	(113)
災害廃棄物ごみ質	低位発熱量	kJ/kg	10,400	(130)	10,400	(120)	10,400	
		(kcal/kg)	(2,480)		(2,480)		(2,480)	
	三成分	水分	30.1	3.3	30.1	3.3	30.1	3.3
搬出割合(湿)		可燃分	65.8	7.3	65.8	7.3	65.8	7.3
11.12% 排出割合 (可燃分)	 可燃分の低位発熱量	灰分 kJ/kg	4.1 16,924	<u>0,5</u> 390	4.1 16,924	<u>0.5</u> 2,533	4.1 16,924	0 <u>.5</u> 2,299
14.97%		(kcal/kg)	(4,043)	(93)	(4.043)	(605)	(4.043)	2,299 (549)
全体	低位発熱量	kJ/kg	1,010/	7,887	(1,0 10/	9,105	(1,0 10/	10,683
(加重平均処理)	2004/2000000000000000000000000000000000	(kcal/kg)		(1,884)		(2,175)		(2,552)
	三成分	水分		48.8		43.8		38.8
搬出割合(湿)		可燃分		43.9		48.9		53.9
100.00% 排出割合 (可燃分)	可燃分の低位発熱量	灰分 kJ/kg		7.2 20,746		7 <u>.3</u> 20,877		7 <u>.3</u> 21,640
100.00%		(kcal/kg)		(4,956)		(4,987)		(5,169)
計画ごみ質(ケース7			低質		基準		高質	
可画にの貝(グース)	· 火吉时/	1. 1.71	貝型		基 华		同貝	
	低位発熱量	kJ/kg		5,600		9,100		12,600
		(kcal/kg)		(1,340)		(2,170)		(3,010)
		水分		57,0		43.8		32.0
発熱比=2.25と	三成分	可燃分		35,8		48.9		60.7
なるよう各パラ メータを補正		灰分		7.2		7.3		7.3
. J C110IE		kJ/kg		19,667		20,830		22,082
	可燃分の低位発熱量	(kcal/kg)		(4,698)		(4,976)		(5,275)
	出片索廷素具	kg/m ³		225		205		
	単位容積重量					205		190
	可燃分の元素組成比		低質ごみ	基準ごみ	高質ごみ			
	C H	dry % dry %	51.00 6.96	52.87 7.28	54.88 7.63			
	N	dry %	1.38	1.20	1.28			
	S	dry %	0.11	0.11	0.11			
	C 1	dry %	0.70	0.86	1.07			
	Ο	dry %	39,85	37.55	35.03			
	合計	dry %	100.00	100,00	100,00			
	可燃分の低位発熱量	1. 170	1005	00.000	20.005			
	(参考値)	kJ/kg	19,651	20,822	22,085			

6. 本施設の処理方式

本施設の処理方式について、環境影響評価準備書で対象とした3方式5種類の 検討を行いましたが、「ストーカ+灰溶融方式」は運転管理が難しい上、事故例が 多いこと等により、また「キルン式ガス化溶融炉」は、近年の採用実績が無いこと 等により、本施設における検討の対象外としました。従って、次の2方式3種類 について調査を行い、その調査結果を処理方式等の選考評価に際しての参考とし て利用します。

ストーカ方式 ジャフト式ガス化溶融方式 シャフト式ガス化溶融方式 流動床式ガス化溶融方式

本施設の処理方式については、今後、詳細な比較検討資料を作成したうえで鳥取 県東部圏域に相応しい方式を検討していくものとしており、ここでは、詳細な比較 検討の対象とする処理方式について検討を行いました。

本施設の処理方式については、環境影響評価準備書において、図6-1に示す3 方式5種類を対象としていますが、これらの方式等について、最新の情勢等を調査 検討した結果、今後の検討においては、つぎの理由によりストーカ+灰溶融方式及 びキルン式ガス化溶融方式については検討の対象から除外することとし、2方式3 種類(ストーカ方式、シャフト式ガス化溶融方式、流動床式ガス化溶融方式)を今 後の検討対象とすることしました。なお、焼却残渣の取り扱いについては、今後の 処理方式検討の過程において検討することとしています。2方式3種類の技術概要 を添付資料に示しました。

【ストーカ+灰溶融方式及びキルン式ガス化溶融方式を検討対象外とした理由】

- ①ストーカ+灰溶融方式については、焼却残渣溶融のために多くのエネルギー(電気、軽油等)が使用され、また補修費も高価であることから、全体としてコストが高く地球温暖化防止対策上も好ましいことではないと考えられたこと及び灰溶融炉における事故も発生している情勢を踏まえ、検討の対象としないこととしました。
- ②キルン式ガス化溶融方式については、平成21年度以降、採用実績がないこと及び現在、この技術を提供できるプラントメーカが存在しているかについては不明であることから、検討の対象としないこととしました。

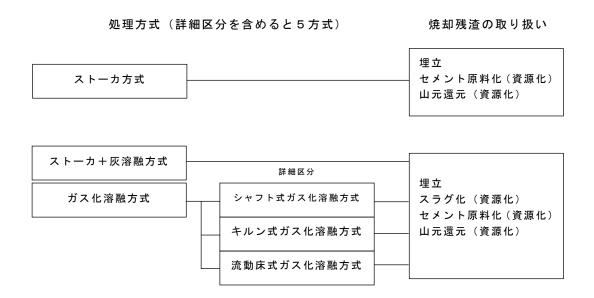


図 6 - 1 環境影響評価の対象とした処理方式

添付資料6-1 他自治体での採用実績について

ここでは地方自治体発注の焼却施設建設工事について各処理方式の採用実績の動向をとりまとめました。

とりまとめにあたっての条件としては、前述の処理方式(詳細区分では5方式) とし、全連続式施設の平成9年度以降での発注実績案件としました(平成25年3 月現在)。なお、平成9年度以降の発注実績案件とした理由は、平成9年にダイオ キシン類対策を主眼とした廃棄物処理法等の法改正や新法(ダイオキシン類対策 特別措置法)等が制定されたことによります。実績情報は工業新報(発行:日本 工業新報)や自治体等の発表資料等によるものとしました。

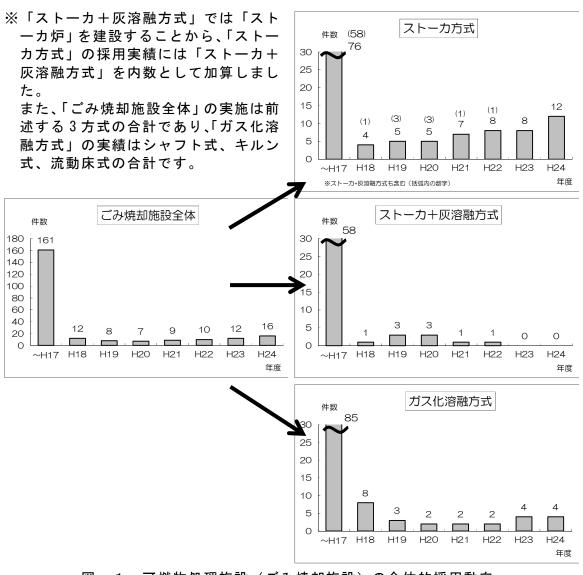


図-1 可燃物処理施設(ごみ焼却施設)の全体的採用動向

添付資料6-2 循環型社会形成推進交付金制度と溶融固化設備の関係について

本施設の建設に当たっては「循環型社会形成推進交付金制度」に基づく交付金 (従前の国庫補助金に代わる制度)を充てる計画です。処理方式の採用実績や動 向を精査するにあたり、交付金制度及び国庫補助金制度における溶融固化設備の 取り扱いについて表-1に整理しました。

表-1 灰溶融固化設備の取り扱いに関する変遷(概要)

年 度	灰溶融固化設備の取り扱いの変遷
平成8年度	●国庫補助金交付要綱にて「灰の溶融固化設備」の設置を交付要件として明記
	※灰溶融炉の設置やガス化溶融炉の採用が事実上義務化
	設置しない場合は原則として補助金が交付されない時代
	国庫補助事業の採択要件としては、ごみ焼却施設を新設する際には、焼却灰及び飛灰のリサ
	イクル・減量化を図るための溶融固化設備(灰溶融炉又はガス化溶融炉)を原則とされていま
	した。このため、平成8年~平成 14 年度採択事業においては、ストーカ方式を採用する場合は
	灰溶融炉の設置が事実上義務化されていました。
平成 15 年度	●「溶融固化設備」を設置しない二つの例外規定が設けられる
以降	①焼却灰をセメントや各種土木資材として再利用する場合
	②最終処分場の残余容量が概ね 15 年以上確保されている場合
	※ストーカ方式単体施設でも国庫補助が受けられるようになった
	焼却灰については、セメント原料化等の新た資源化技術の開発が進むとともに、地域の実情
	に応じた合理的な施設整備を行うことも必要であることから、平成 15年 12月 16日付の環境省
	事務連絡「ごみ焼却施設の新設時における灰溶融設備の設置について」において、上記の例外
	規定を満足する限りにおいては、溶融固化設備を設置しなくても国庫補助の対象とすることと
	されました。この通知以降、ごみ焼却施設における溶融固化設備の取り扱いが柔軟となり、地
	域の実情に応じた施設整備が可能となりました。
平成 16 年度	●従来の国庫補助制度が廃止され「循環型社会形成推進交付金制度」を創設
以降	※廃棄物処理施設整備メニューが地域の実情に応じて柔軟化
平成 22 年度	●溶融固化設備(灰溶融炉)を廃止しても補助金の返還が不要となる
	※国庫補助金により建設された施設を廃止する場合は法に基づく「財産処分」が必要であり、
	一定期間以上の稼働を行わずに廃止する場合は補助金の返還が必要であるが、灰溶融炉稼
	働に伴う二酸化炭素排出量を考慮し、一定の条件を満足する限り補助金の返還が不要とな
	った
	・当該制度を運用できる条件
	① 灰溶融炉の廃止に伴い、飛灰は法に基づき適正に運搬・処理・処分・再生するこ
	٤.
	② 焼却灰はセメントや各種土木材料等として再生利用することが望ましいが、やむ
	を得ず埋立処分する場合は法に定める維持管理基準等に適合すること。
	③ 最終処分場の残存容量が、概ね 15 年以上確保されていること。
	④ 灰溶融炉の廃止に伴う CO₂の排出削減が客観的に明確であること。
	⑤ 灰溶融炉の不具合を意図的に放置したために休止に至る等、不適切な事態が生じ
	ていないこと。

添付資料6-3 ストーカ方式の動向について

全国におけるストーカ方式(ストーカ+灰溶融方式のストーカ炉を含む)の採用実績は現時点で125件(ストーカ方式単体では58件)です。灰溶融固化設備の設置が事実上義務化されていた平成9~14年度の間におけるストーカ方式単体での採用実績は僅かに16件に留まりますが、前述の灰溶融固化設備設置に係る国庫補助要件が緩和された後は採用が拡大しており、近年では年間7割程度の施設がストーカ方式を採用しています(図参-2)。また、中国地方5県での近年供用を開始(又は予定)した施設のうち、ストーカ方式(灰溶融付きを含む)の施設概要を表参-2に整理しました。なお、中国地方5県におけるストーカ方式施設の採用は最大多数であり、鳥取県東部圏域内の既存焼却施設も同様にストーカ方式を採用しています。

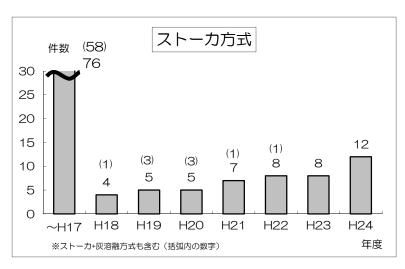


図-2 ストーカ方式の全体的採用動向

表-2 中国地方5県におけるストーカ方式施設の概要

設置自治体名	施設規模	供用開始時期
鳥取県米子市	270 t /日 (90 t × 3 炉) ※灰溶融付き	平成 14 年 4 月
島根県益田地区広域市町村圏事務組合	62 t/日 (31 t × 2 炉) ※灰溶融付き	平成 19 年 10 月
岡山県岡山市	220 t /日(110 t × 2 炉)	昭和 54 年 1 月
(岡南環境センター)	※灰溶融付き(休止中)	※灰溶融は平成 15 年 3 月
広島県広島市 (中工場)	600 t /日 (200 t × 3 炉) ※灰溶融付き (廃止済み)	平成 16 年 4 月
広島県広島市 (安佐南工場)	400 t/日 (200 t × 2 炉)	平成 25 年 4 月
山口県下関市	180 t /日(180 t × 1 炉) ※灰溶融付き(廃止予定)	平成 14 年 11 月
山口県防府市	152 t/日 (76 t × 2炉)	平成 26 年 4 月予定 ※建設中
山口県萩・長門清掃一部事務組合	104 t /日(52 t × 2 炉)	平成 27 年 4 月予定 ※建設中

添付資料6-4 ストーカ+灰溶融方式の動向について

全国におけるストーカ方式+灰溶融方式の採用実績は現時点で 67 件です。灰溶融固化設備の設置が事実上義務化されていた平成 9~14 年度の間における採用実績は 46 件ですが、前述の灰溶融固化設備設置に係る国庫補助要件が緩和された後の採用傾向は鈍化しており、直近 2 年間の採用実績はゼロでした(図 - 3)。

また、中国地方5県には5施設が建設・供用されていますが、このうち3施設については灰溶融炉を休止・廃止済み又は廃止予定とされています(表-3)。灰溶融炉廃止の動向については、前述の財産処分の取り扱いについての通知以降、全国的にも同様に灰溶融炉の休止・廃止が計画・報告されています。

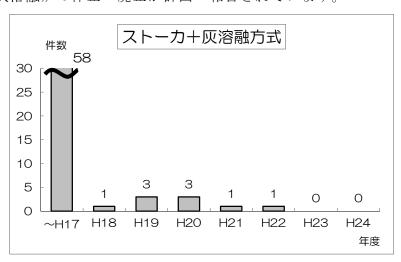


図-3 ストーカ+灰溶融方式の全体的採用動向

設置自治体名	施設規模 (灰溶融のみ)	供用開始時期	備考 (灰溶融炉の取り扱い)
鳥取県米子市	プラズマ式灰溶融炉 29 t /日 (29 t × 1 炉)	平成 14 年 4 月	稼働中
島根県益田地区広域 市町村圏事務組合	バーナ式灰溶融炉 9.6 t /日 (9.6 t × 1 炉)	平成 19 年 10 月	稼働中
岡山県岡山市 (岡南環境センター)	テルミット式灰溶融炉 26 t/日(26 t × 1 炉)	昭和 54 年 1 月 ※灰溶融は平成 15 年 3 月	平成 23 年度に休止済み*
広島県広島市 (中工場)	プラズマ式灰溶融炉 96 t/日(48 t × 2 炉)	平成 16 年 4 月	平成 24 年度に廃止済み [※] 2
山口県下関市	プラズマ式灰溶融炉	平成 14 年 11 月	平成 25 年度内廃止予定*

表-3 中国地方5県におけるストーカー灰溶融方式施設の概要

※1 情報の出典:不明(事実として平成23年度より稼働を休止しセメント原料化へ変更済み)

廃止の理由:不明

※2 情報の出典:毎日新聞(広島:2011.11.22)

廃止の理由: H23.4.17 に発生した灰溶融炉の破損・火災事故を機に経費削減を目的に廃止。

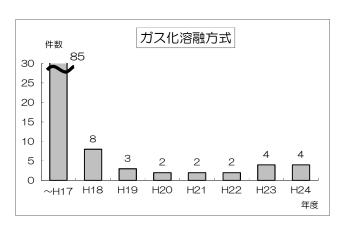
廃止に伴う経費削減効果は約5.9億円/年と試算(事務事業見直しの中間報告)

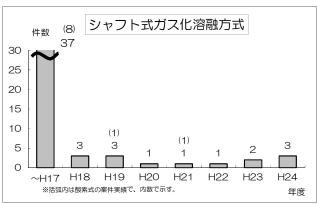
※3 情報の出典:平成25年度当初予算の概要(下関市)

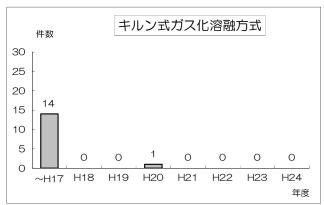
廃止の理由:灰溶融炉の廃止により約2.5億円の経費節減。

41 t /日 (41 t × 1 炉)

当初は老朽化した旧工場の建て替えを機にセメント原料化へ移行し灰溶融炉


を廃止する計画であったが、計画を前倒して廃止することに至った。


添付資料6-5 ガス化溶融方式の動向について


全国におけるガス化溶融方式(シャフト式、キルン式、流動床式)の採用実績は 現時点で110件であり、このうちシャフト式が最多の51件、次いで流動床式が44件、キルン式が15件です。灰溶融固化設備の設置が事実上義務化されていた平成9~14年度の間における採用実績は、ガス化溶融方式全体で60件と市場シェアの多数を占めていました。前述の灰溶融固化設備に係る国庫補助要件が緩和された後は採用傾向が鈍化していますが、ストーカ方式に次いで採用されている処理方式です。

詳細な区分である3方式の動向は、シャフト式の採用が毎年コンスタントに継続しており、ガス化溶融方式中最多の採用実績です。流動床式はシャフト式に次ぐ採用実績で近年においても採用されていますが、キルン式については採用実績も少なく、近年は採用されていません(図-4)。

現在、中国地方 5 県には 6 施設が建設・供用されており、採用動向については全国の動向とほぼ同様の傾向にあります(表-4)。

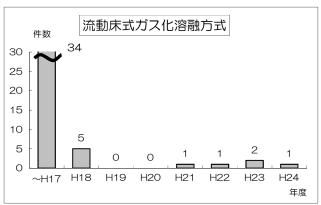
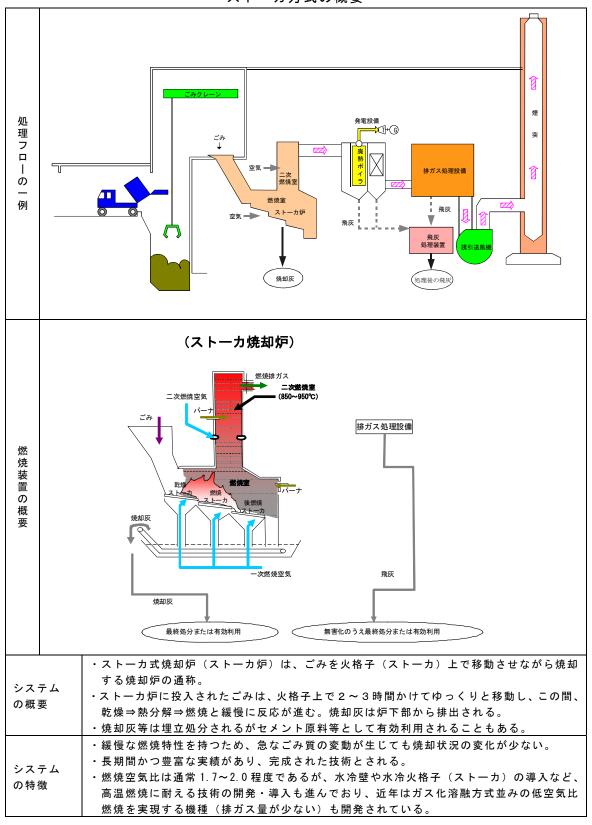
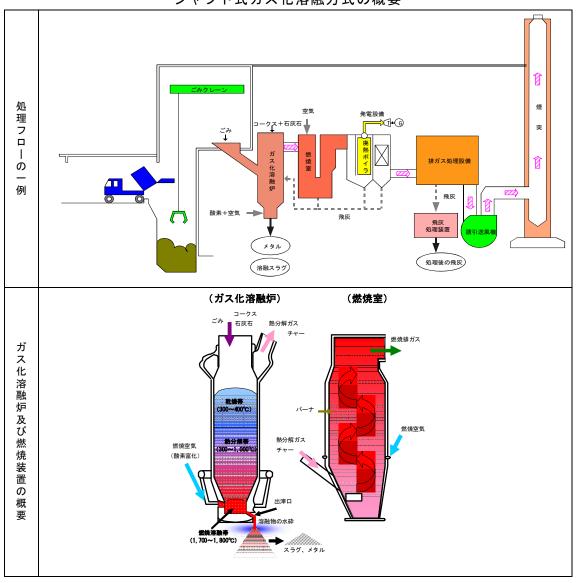
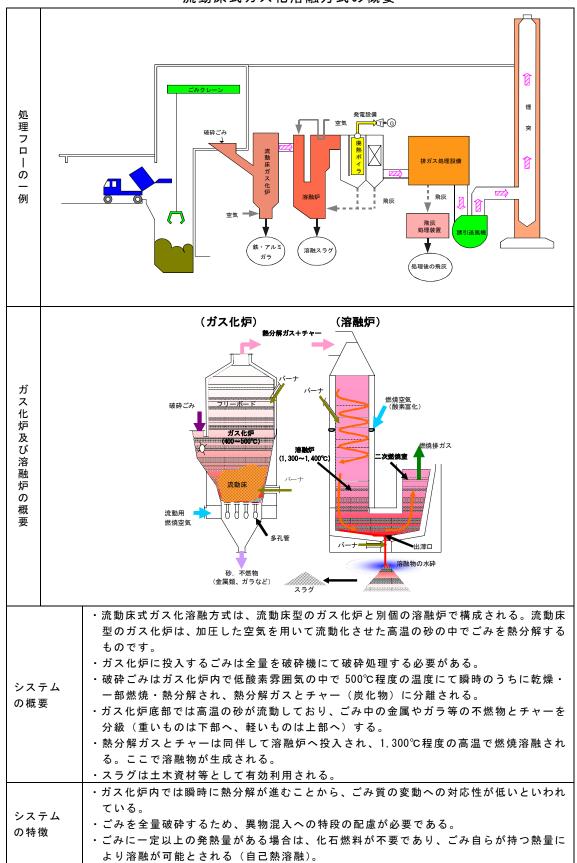



図-4 ガス化溶融方式の全体的採用動向


表-4 中国地方5県におけるガス化溶融方式施設の概要

設置自治体名	施設規模	供用開始時期
島根県松江市	シャフト式ガス化溶融方式 255 t /日 (85 t × 3 炉)	平成 23 年 4 月
島根県出雲市	キルン式ガス化溶融方式 218 t/日 (109 t × 2 炉)	平成 15 年 10 月
島根県浜田地区広域行政組合	シャフト式ガス化溶融方式 98 t /日 (49 t × 2 炉)	平成 19 年 12 月
福山リサイクル発電株式会社 (第3セクター)	シャフト式ガス化溶融方式 314 t /日(314 t × 1 炉)	平成 16 年 4 月
広島県安芸地区衛生施設管理組合	流動床式ガス化溶融方式 130 t/日(65 t×2 炉)	平成 14 年 12 月
山口県宇部市	流動床式ガス化溶融方式 198 t /日 (69 t × 3 炉)	平成 14 年 12 月

ストーカ方式の概要



シャフト式ガス化溶融方式の概要

	・シャフト式ガス化溶融方式は、縦型筒状のシャフト炉にてごみのガス化と溶融を一体的
	│ に行うものである。直接溶融方式とも呼ばれる。
	・シャフト式ガス化溶融方式には、コークスと石灰石を副資材として投入する「コークス
	│ ベッド型」と、コークスを利用しない「酸素型」がある。
	・コークスベッド型では、ごみは炉頂部から副資材(コークス・石灰石)とともに投入さ
システム	れる。炉内部では、上部で乾燥、中部で熱分解、下部では 1,700℃以上の高温により熱分
の概要	解後のごみを溶融させる。
	│・ごみとともに投入されるコークスは、炉底部で網目状のコークスベッドを形成し、これ
	が火格子の役割を担うことで安定的な燃焼溶融を担保する。
	・ガス化溶融炉の上部から排出される熱分解ガス(一部のチャーやダストを含有する)は、
	別置きの燃焼室において高温にて完全燃焼される。
	・スラグは土木資材等として有効利用される。
	・炉内でのごみの滞留時間は1時間~3時間程度であり、コークスが持つ高い熱エネルギ
	一と相まって、ごみ質の変動に対する追随性は高いとされる。
│システム ┃ の特徴	・炉の中に入る大きさであれば、対象とするごみを選ばない特徴があるため、ガラス屑や
り付取	陶器屑、破砕・選別後の不燃残渣も処理可能である。
	・燃焼空気比は 1.4 程度であるが、助燃剤の使用等により排ガス量が多くなることもある。

流動床式ガス化溶融方式の概要

7. 本施設の事業実施方式

本施設の工事、運営に係る公共と民間の役割分担に関する方式(以下、「事業実施方式」という。)について、公設公営方式、公設民営方式及び PFI 方式について検討を対象に検討を行った結果、時間的制約、経済性及び競争性の確保の観点から、公設民営方式のうち、運営管理を包括的かつ長期的に民間に委託する公設/民営(建設・運営一括発注方式)を採用します。

ごみ処理施設における事業実施方式は、大別すると公設公営方式、公設民営方式 及びPFI方式の3方式がある。各方式の概要を表7-1に示します。

このうち、PFI 方式については、発注手続きに時間を要し、本施設の整備工程になじまないと判断した。

表 7 - 1 ごみ処理施設の整備・運営に用いられる事業実施方式の種類と概要

方式	概要	備考
公設公営方式	施設の建設及び所有権は、公共が 担い、施設の運営管理も公共が実	多くのごみ処理施設が本方式である。ただし、運転のみ民間に役務
	施する方式。	委託することもある。
	施設の建設及び所有権は、公共が	公共においては、運営管理に係る
	担うが、施設の運営管理は、運転	コストが長期にわたり平準化・予
	に加え、補修も含めて包括的かつ	算化できることから計画的な財政
公設民営方式	長期間、民間に委託する方式。	運用が可能となる。また、運営管
		理を行う民間企業は、創意工夫に
		よりコスト縮減を図ることもでき
		る。
	PFI法※1に基づき、基本的には施	施設の建設コストを公共が調達す
PFI 方式	設の建設、運営等を民間の資金、	る方式(DBO 方式)もある。
111万式	経営能力及び技術的能力を活用し	
	て行う方法。	

※1 民間資金等の活用による公共施設等の整備等の促進に関する法律

このため、PFI 方式を除く公設公営方式及び公設民営方式について、詳細な検討を行うものとしました。公設民営方式には、運営管理委託と建設工事を別途に契約する方式(公設/民営(建設・運営分離発注方式))と運営管理委託と建設工事を合わせて契約する方式(公設/民営(建設・運営一括発注方式))があります。以上の方式の概要を表7-2に示します。

これらの方式について検討を行った結果、コスト競争性を発揮させることが可能 で、経済的メリットが大きいと考えられた公設/民営(建設・運営一括発注方式)が 望ましいとの結論に達しました。

今後、安全で適切な管理運営を確保するための監視体制等について検討していきます。

表 7 - 2 公設公営方式及び公設民営方式 (建設・運営分離発注方式及び建設・運営一括発注方式)の概要

・施設の建設及び所有権は、公共が担い、施設の運営管理も公共が実施する方式。 ・建設、運営管理、電気・薬品等の用役資材の調達、補修工事等は各々を分離して個別に契約する。 ・施設の建設及び所有権は、公共が担う。また、運営の最終責任は公共が持つ。・施設の運営管理は、補修費等も含めて包括的かつ長期間に委託する(長期包括的運営委託)は分離発注とする。 ・施設の運営管理は、補修費等も含めて包括的が運営を設定が、応礼する会社が少なる。・また、運営管理を行う民間企業は、創意工夫によりりコスト縮減を図ることでは、建設と関連を行う民間企業は、創意工夫によりよりおい、応利する会社が少なく、競争性の確保が課題となる。・連設と運営委託については、建設を開いるが、応礼する会社が少なく、競争性の確保が課題となる。・建設と運営を発注方式に比く、が担う。また、運営の最終責任は公共が持つ。・施設の運転管理は、補修費等も含めて包括的かの長期間に委託で会社が少なく、競争性の確保が課題となる。・建設と運営を発注方式に比くるが、応礼する会社が少なく、競争性の確保が課題となるが、応礼する会社が少なく、競争性の確保が課題となる。・建設と運営を発注方式に比くることで、分離発注方式に比くて高い競争環境が確保できる。・建設と運営に関して、民間の創意工夫が反映される範囲は他ケースに比べて広い。 ・建設と運営に関して、民間の創意工夫が反映される範囲は他ケースに比べて広い。	方式	概要	備者
が担い、施設の運営管理も公共 が実施する方式。 ・建設、運営管理、電気・薬品等 の用役資材の調達、補修工事等は、施設を建設したプラントメーカとの随意契約とするケースが多い。 ・施設の建設及び所有権は、公共が担う。また、運営の最終責任は公共が持つ。 ・施設の運営管理は、補修費等も含めて包括的かつ長期間、民間に委託する(長期包括的運営委託は分離発注とする。 ・建設工事と長期包括的運営委託は分離発注とする。 ・遊沙民営 建設・運営 一括発注方式 ・施設の建設及び所有権は、公共が担う。また、運営管理を発言となる。・また、運営管理を表記を変更したが多い。 ・施設の運営管理は、補修費等も含めて包括的運営委託は分離発注とする。 ・運営委託にしては、建設となるが、応れする会社が少なく、競争性の確保が課題となる。・建設と運営を一括上て発注することで、分離発注方式に比べて高い競争環境が確保できる。・建設と運営に関して、民間に委託する(長期包括的運営委託)。・建設と運営に関して、民間の創意工夫が反映される範囲は他ケースに比べて広い。 ・建設と運営に関して、民間の創意工夫が反映される範囲は他ケースに比べて広い。 ・建設と運営に関して、民間の創意工夫が反映される範囲は他ケースに比べて広い。	刀式		213 5
・建設、運営管理、電気・薬品等の用役資材の調達、補修工事等は、施設を建設したプラントメーカとの随意契約する。 ・施設の建設及び所有権は、公共が担う。また、運営の最終責任は公共が持つ。・施設の運営管理は、補修費等も含めて包括的かつ長期間、民間に委託する(長期包括的運営委託は分離発注とする。・建設工事と長期包括的運営委託は分離発注方式・施設の運転管理は、補修費等も含めて包括的・運営委託については、建営管理を行う民間企業は、創意工夫によりコスト統議を図ることもできる。・建設と正常を表記となるが、応れする会社が少なく、競争性の確保が課題となる。・建設と運営を一括して発注で、会議等性の確保が課題となる。・建設と運営を一括して発注で、で高い競争環境が確保できる。・建設と運営を一括して発注で、で高い競争環境が確保できる。・建設と運営を一括して発注が、で高い競争環境が確保できる。・建設と運営を一括して発注が、で高い競争環境が確保できる。・建設と運営に関して、高い競争環境が確保できる。・建設と運営に関して、の創意工夫が反映される範囲は他ケースに比べて広い。 ・建設と運営に関して、の創意工夫が反映される範囲は他ケースに比べて広い。			
・建設、運営管理、電気・薬品等の用役資材の調達、補修工事等は、施設を建設したブラントメーカとの随意契約とするケースが多い。 ・施設の建設及び所有権は、公共が担う。また、運営の最終責任は公共が持つ。・施設の運営管理は、補修費等も含めて包括的かつ長期間に委託する(長期包括的運営委託は分離発注とする。・建設工事と長期包括的運営委託は分離発注をする。・・連設と運営を一括して発注するにとなるが、地方の運転管理は、補修費等も含めて包括的かつ長期間に委託によりよなるが、中の確保が課題となる。・・連設と運営を一括して発注することで、分離発注方式に比べて高い競争環境が確保できる。・・建設と運営を一括して発注することで、分離発注方式に比べて高い競争環境が確保できる。・・建設と運営を一括して発注することで、分離発注方式に比べて高い競争環境が確保できる。・・建設と運営を一括して発注することで、分離発注方式に比べて高い競争環境が確保できる。・・建設・運営を一括の正と、定間の創意工夫が反映される範囲は他ケースに比べて広い。			
の用役資材の調達、補修工事等は、施設を建設したプラントメーカとの随意契する。 ・施設の建設及び所有権は、公共が担う。また、運営の最終責任は公共が持つ。・施設の運営管理は、補修費等も含めて包括的かつ長期間、民間に委託する(長期包括的運営委託は分離発注とする。 ・建設工事と長期包括的運営委託は分離発注とする。 ・施設の建設及び所有権は、公共が担う。また、運営の最終責任は公共が持つ。・建設工事と長期包括的運営委託は分離発注とする。 ・運営委託については、建設契約とは別途に発注・契約となるが、応礼する会社が少なく、競争性の確保が課題となる。・建設と運営を一括して発注することで、分離発注方式に比べて高い競争環境が確保できる。・建設と運営を一括して発注することで、分離発注方式に比べて高い競争環境が確保できる。・建設・運営に関して、民間の創意工夫が反映される範囲は他ケースに比べて広い。 ・建設工事と長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託にも価格競争性を			
は各々を分離して個別に契約する。 ・施設の建設及び所有権は、公共が担う。また、運営の最終責任は公共が持つ。 ・施設の運営管理は、補修費等も含めて包括的かつ長期間、民間に委託する(長期包括的運営委託については、建盟管理を行う民間企業は、創意工夫によりコスト統設の運営を理な、長期包括的運営委託については、建設契約とは別途に発注・契約とは別途に発注・契約とは別途に発注・契約とは別途に発注・契約となるが、応札する会社が少なく、競争性の確保が課題となる。 ・施設の建設及び所有権は、公共が担う。また、運営の最終責任は公共が持つ。 ・施設の運転管理は、補修費等も含めて包括的かつ長期間、民間に委託する(長期包括的運営委託をつおの長期間、民間に委託する(長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託を一括発注することにより、分離を対して、民間の創意工夫が反映される範囲は他ケースに比べて広い。	公設公営方式	・建設、運営管理、電気・薬品等	するケースが多い。
・施設の建設及び所有権は、公共が担う。また、運営の最終責任は公共が持つ。・施設の運営管理は、補修費等も含めて包括的かつ長期間、民間に委託する(長期包括的運営委託)。・建設工事と長期包括的運営委託)が起う。また、運営管理を行う民間企業は、創意工夫によりコスト統設工事と長期包括的運営委託)が違さとする。・運営委託については、建設契約とは別途に発注・契約となるが、応札する会社が少なく、競争性の確保が課題となる。・連設と運営を一括して発注することで、分離発注方式に比べて高い競争環境が確保できる。・建設と運営を一括して発注することで、分離発注方式に比べて高い競争環境が確保できる。・建設と運営に関して、民間の創意工夫が反映される範囲は他ケースに比べて広い。・建設工事と長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託と、分離発達することにより、分離発注方式では不可能な長期包括的運営委託にも価格競争性を		の用役資材の調達、補修工事等	・補修工事等は、施設を建設し
・施設の建設及び所有権は、公共が担う。また、運営の最終責任は公共が持つ。 ・施設の運営管理は、補修費等も含めて包括的かつ長期間、民間に委託する(長期包括的運営委託は分離発注とする。 ・建設工事と長期包括的運営委託は分離発注とする。 ・施設の建設及び所有権は、公共が提出となる。・連営委託については、建設契約とは別途に発注・契約となるが、応札する会社が少なく、競争性の確保が課題となる。・建設と運営委託に出て発注することで、分離発注方式に比べて高い競争環境が確保できる。・建設と運営に関して、民間の創意工夫が反映される範囲は他ケースに比べて広い。・建設工事と長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託を一括発達することにより、分離発注方式では不可能な長期包括的運営委託にも価格競争性を		は各々を分離して個別に契約	たプラントメーカとの随意契
が担う。また、運営の最終責任 は公共が持つ。 ・施設の運営管理は、補修費等も 含めて包括的かつ長期間、民間 に委託する(長期包括的運営委託)。・建設工事と長期包括的運営委託 は分離発注とする。 ・・建設工事と長期包括的運営委託 は分離発注とする。 ・・連盟及び所有権は、公共が持つ。・施設の建設及び所有権は、公共が持つ。・施設の運転管理は、補修費等もは公共が持つ。・施設の運転管理は、補修費等もは公共が持つ。・施設の運転管理は、補修費等も含めて包括的かつ長期間、民間に委託する(長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託にも価格競争性を		する。	約とするケースが多い。
は公共が持つ。 ・施設の運営管理は、補修費等も 含めて包括的かつ長期間、民間 に委託する(長期包括的運営委 託)。 ・建設工事と長期包括的運営委託 は分離発注とする。 ・連盟工事と長期包括的運営委託 は分離発注とする。 ・・運営委託については、建設契約とは別途に発注・契約となるが、応札する会社が少なく、競争性の確保が課題となる。 ・・連設と運営を一括して発注することで、分離発注方式に比べて高い競争環境が確保できる。・・建設と運営を一括して発注することで、分離発注方式に比べて高い競争環境が確保できる。・・建設と運営に関して、民間の創意工夫が反映される範囲はに委託する(長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括の運営委託にも価格競争性を		・施設の建設及び所有権は、公共	・公共においては、運営管理に
・施設の運営管理は、補修費等も 含めて包括的かつ長期間、民間 に委託する(長期包括的運営委託 ・建設工事と長期包括的運営委託 は分離発注とする。 ・施設の建設及び所有権は、公共 が担う。また、運営の最終責任 は公共が持つ。 ・施設の運転管理は、補修費等も 含めて包括的かつ長期間、民間 に委託する(長期包括的運営委託 が担う。また、運営の最終責任 は公共が持つ。 ・施設の運転管理は、補修費等も 含めて包括的かつ長期間、民間 に委託する(長期包括的運営委託 を対して、民間の 創意工夫が反映される範囲は 他ケースに比べて広い。 ・建設と運営を一括して発注することで、分離発注方式に比べ で高い競争環境が確保できる。 ・建設と運営に関して、民間の 創意工夫が反映される範囲は 他ケースに比べて広い。 ・建設工事と長期包括的運営委託 を一括発注することにより、分 離発注方式では不可能な長期包 括的運営委託にも価格競争性を		が担う。また、運営の最終責任	係るコストが長期にわたり予
公設/民営		は公共が持つ。	算化できることから計画的な
建設・運営 分離発注方式 に委託する(長期包括的運営委託 託)。 ・建設工事と長期包括的運営委託 は分離発注とする。 ・施設の建設及び所有権は、公共 が担う。また、運営の最終責任 は公共が持つ。 ・施設の運転管理は、補修費等も 含めて包括的かつ長期間、民間 に委託する(長期包括的運営委託 を一括発注することにより、分離発注方式では不可能な長期包括的運営委託 を一括発注することにより、分離発注方式では不可能な長期包括的運営委託にも価格競争性を		・施設の運営管理は、補修費等も	財政運用が可能となる。
建設・運営 分離発注方式 に委託する(長期包括的運営委託 託)。 ・建設工事と長期包括的運営委託 は分離発注とする。 ・施設の建設及び所有権は、公共 が担う。また、運営の最終責任 は公共が持つ。 ・施設の運転管理は、補修費等も 含めて包括的かつ長期間、民間 に委託する(長期包括的運営委託 を一括発注することにより、分離発注方式では不可能な長期包括的運営委託 を一括発注することにより、分離発注方式では不可能な長期包括的運営委託にも価格競争性を	公設/民営	含めて包括的かつ長期間、民間	・また、運営管理を行う民間企
新発注方式 記)。 ・建設工事と長期包括的運営委託 については、建設契		1	
・建設工事と長期包括的運営委託 ・運営委託については、建設契約となるが、応札する会社が少なく、競争性の確保が課題となる。 ・施設の建設及び所有権は、公共が担う。また、運営の最終責任は公共が持つ。・施設の運転管理は、補修費等も含めて包括的かつ長期間、民間に委託する(長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託にも価格競争性を		1	
は分離発注とする。 約とは別途に発注・契約となるが、応札する会社が少なく、競争性の確保が課題となる。 ・施設の建設及び所有権は、公共が担う。また、運営の最終責任は公共が持つ。・施設の運転管理は、補修費等も含めて包括的かつ長期間、民間に委託する(長期包括的運営委託を委託する(長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託にも価格競争性を) HE / 1 / 1 / 1	1	
・施設の建設及び所有権は、公共が担う。また、運営の最終責任は公共が持つ。・施設の運転管理は、補修費等も含めて包括的かつ長期間、民間に委託する(長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託にも価格競争性を		1	
が担う。また、運営の最終責任 は公共が持つ。 ・施設の運転管理は、補修費等も 含めて包括的かつ長期間、民間 に委託する(長期包括的運営委託)。 ・建設と運営に関して、民間の 創意工夫が反映される範囲は に委託する(長期包括的運営委託 を一括発注することにより、分離発注方式では不可能な長期包括的運営委託にも価格競争性を		はり解光圧とする。	
・施設の建設及び所有権は、公共が担う。また、運営の最終責任は公共が持つ。 ・施設の運転管理は、補修費等も合かで包括的かつ長期間、民間に委託する(長期包括的運営委託)。 ・建設工事と長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託にも価格競争性を			
が担う。また、運営の最終責任 は公共が持つ。 ・施設の運転管理は、補修費等も 含めて包括的かつ長期間、民間 に委託する(長期包括的運営委 ・建設と運営に関して、民間の 創意工夫が反映される範囲は 他ケースに比べて広い。 ・建設工事と長期包括的運営委託 を一括発注することにより、分 離発注方式では不可能な長期包 括的運営委託にも価格競争性を		女司。 女司。 本司。 本司。 本司。 本司。 本司。 本司。 本司。 本	
は公共が持つ。 ・施設の運転管理は、補修費等も 含めて包括的かつ長期間、民間 に委託する(長期包括的運営委 ・建設と運営に関して、民間の 創意工夫が反映される範囲は に委託する(長期包括的運営委託 ・建設工事と長期包括的運営委託 を一括発注することにより、分 離発注方式では不可能な長期包 括的運営委託にも価格競争性を			
・施設の運転管理は、補修費等も 含めて包括的かつ長期間、民間 に委託する(長期包括的運営委託)。 ・建設工事と長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託にも価格競争性を			
公設/民営 建設・運営 一括発注方式 - 一括発注方式 - 一括発注方式 - 一括発注することにより、分離発注方式では不可能な長期包括的運営委託を一括発注することにより、分離発注方式では不可能な長期包括的運営委託にも価格競争性を			
公設/民宮 建設・運営 一括発注方式 に委託する(長期包括的運営委 託)。 ・建設工事と長期包括的運営委託 を一括発注することにより、分 離発注方式では不可能な長期包 括的運営委託にも価格競争性を			
建設・運営	◇設/民堂		
ー括発注方式 ・建設工事と長期包括的運営委託 を一括発注することにより、分 離発注方式では不可能な長期包 括的運営委託にも価格競争性を		に委託する(長期包括的運営委	他ケースに比べて広い。
・建設工事と長期包括的運営委託 を一括発注することにより、分 離発注方式では不可能な長期包 括的運営委託にも価格競争性を		託)。	
離発注方式では不可能な長期包 括的運営委託にも価格競争性を	1	・建設工事と長期包括的運営委託	
括的運営委託にも価格競争性を		を一括発注することにより、分	
		離発注方式では不可能な長期包	
確保できる。		括的運営委託にも価格競争性を	
		確保できる。	

参 考 資 料

可燃物処理施設整備検討委員会「第3次報告書」概要 (平成25年8月28日 本組合管理者へ提出)

1 施設整備基本方針(5項目)を策定

- ① 万全の環境保全対策を講じた施設とすること
- ② ごみを安全かつ安定的に処理できる施設とすること
- ③ 資源の循環とごみの持つエネルギーの有効利用に貢献する施設とすること
- ④ 周辺環境との調和と多様な機能により地域が誇りに思える施設とすること
- ⑤ 運営管理が容易で経済性・耐用性に優れた施設とすること

2 施設の基本仕様

①処理対象物(6種類)

〔現在でも焼却しているもの:4種類〕

収集可燃ごみ、事業系可燃ごみ、直搬可燃ごみ、し渣

[新しく対象としたもの:2種類]

軽量残渣(不燃物破砕処理後の可燃系ごみ)、災害廃棄物

- ※ 分別形態は現行を基本とする。
- ※ 汚れたプラスチックについては、住民負担の軽減、水環境への負荷軽減等を 考慮して可燃物とし、焼却発電のエネルギーとして活用する。

②施設規模

1日当たり270トンとしていた規模を、1日当たり240トンとした。

- ※ 平成24年度までの実績を基に、人口やごみ排出量の将来推計を行なった。
- ※ 災害廃棄物対応として、年間日平均処理量に10トンを加算した。 (他都市事例を参考とし、処理対象物の約5%程度とした。)

③炉数

今までは3炉構成としていたが、新たな施設規模、建設費、運営費、熱効率、 工事期間、他都市事例等を考慮して、2炉構成が望ましいとした。

4計画ごみ質

神谷清掃工場のごみ質調査の検討を行った結果、高効率発電への適応が可能となる、ごみの低位発熱量を満たすと推定された。(2,100kcal)

⑤処理方式

環境影響評価では、3方式5種類の方式について検討を行なったが、運転管理 状況や採用実績等を再度検討し、2方式3種類の方式を今後の処理方式選考評 価の対象とすることが望ましいとした。

ストーカ方式

ガス化溶融方式 シャフト式ガス化溶融方式 流動床式ガス化溶融方式

(ストーカ+灰溶融方式、キルン式ガス化溶融方式は対象外とした。)

3 事業実施方式

公設/民営(建設・運営一括発注方式)が望ましいとした。 (運営管理も包括的かつ長期的に民間に委託する。)

可燃物処理施設整備検討委員会「第3次報告書」 に係るパブリックコメント実施結果について

1.	実施期間	平成25年8月30日(金)~平成25年9月18日(水)(20日間)
2.	意見提出者	20名
3.	提出意見数	□第3次報告書に関する意見 16件(8人) □その他の意見 26件(12人)
4.	意見の扱い	□第3次報告書に関する意見 当該報告書の内容に関するものとして、ホームページ に掲載するとともに、東部広域としての見解を同時に 公表する。 □その他の意見 通常の意見・提案として、寄せられた意見は集約し、 ホームページに掲載するとともに、東部広域としての 見解を同時に公表する。

5. 寄せられた意見の概要と本組合の見解について (別紙)

「第3次報告書」に関する意見の概要と本組合の見解について

No	意見の概要	本組合の見解
1.0	報告書の「2、施設の基本仕様について」の	現在検討中の2方式3種類(ストーカ方式
	(5)処理方式では、詳細な比較検討の対象とな	とガス化溶融方式の2方式。ただし、ガス化
	る処理方式として、ストーカ方式、シャフト式	溶融方式については、シャフト式ガス化溶融
	ガス化溶融方式及び流動床式ガス化溶融方式	炉と流動床式ガス化溶融炉2種類ある。)につ
	が適当であると結論付けられています。そのう	いては、全国的に見てもどの方式も採用され、
	ちのストーカ方式は、鳥取県東部圏域で稼働中	適切に運転・管理されていることから問題な
	の4施設すべてで採用されている方式であり、	いものと考えており、今後、本組合の可燃物
	新旧の施設でなされた処理方式の選択のすべ	処理施設整備検討委員会で慎重に検討してい
	てがストーカ方式で一致していることから、ス	きます。
	トーカ方式は時間の経過の上からも信頼性の	
	高い技術であると言えます。	
	併せて、現在、稼動している4つのごみ処理	
	施設は15年から20年に及ぶ実績を積み重ねて	
	来ています。鳥取県東部広域行政管理組合で	
	は、それに関わった職員にストーカ方式の特性	
1	や技術的知見等の運転に関するノウハウが蓄	
	積されているはずで、そのことが安全と安心を	
	確保するための大きな支えとなっていると考	
	えられます。	
	シャフト式ガス化溶融方式や流動床式ガス	
	化溶融方式も信頼性が確立された設備だとは	
	思いますが、これらの方式を採用すると、関係	
	する職員は新しい技術と機械操作に習熟する	
	ところから出発することになります。日々の稼	
	働や訓練によって機械操作や臨機の措置等に	
	関する習熟度が高まるまでは、現在よりもヒュ	
	ーマンエラー(人為的過誤や失敗)発生の危険	
	が高まることは避けられません。	
	以上のことから、私はストーカ方式を採用す	
	ることが妥当と考えます。	
	ストーカ方式やシャフト式ガス化溶融方式、	本計画では、基本的に可燃ごみ処理後に発
	また、流動床式ガス化溶融方式では、それぞれ	生する残渣は、再利用または埋立処分するこ
	排出される焼却残渣が異なるが、どのように処	ととしています。
	理、または資源化されるのか。	ストーカ方式では焼却灰及び飛灰が排出さ
0		れますが、これらは、埋立処分、セメント原
2		料化としての再利用及び山元還元することと
		して検討を進める計画です。
		ガス化溶融方式の 2 種類(シャフト式ガス化
		溶融炉と流動床式ガス化溶融炉) ではメタル、
		スラグ、飛灰が排出されますが、これらは、

	T	
		埋立処分、路盤材原料やセメント原料等としての再利用及び山元還元することとして検討を進める計画です。
3	処理方式について、「ストーカ方式、シャフト式ガス化溶融方式、流動床式ガス化溶融方式を調査し、その結果を処理方式等の選考評価に際しての参考として利用」とあるが、調査項目には、過去のトラブル内容、また、その防止策(対策事項)も含めた内容記述となっているのか。	調査項目については、多岐に渡り行います。 ご指摘の点については考慮していきたいと考 えています。
4	ごみ焼却施設(高効率発電施設)において、トラブルや事故等が発生していると聞いている。 最近では、姫路市のごみ焼却施設(高効率発電施設)が試運転に爆発事故を起こしている。また、一定以上の熱効率を確保している専用の火力発電施設でさえも事故が起こっており、不安を感じる	ご指摘のあった姫路市の「ガス爆発」事故 例は、施設稼働中及び施設の設備が原因では なく、隣接の関連施設は埋立地に建設中であ ったため、その地下(地中)に溜まっていた メタンガスが原因で発生したものです。焼却 施設の運転に関連したものではありません。 なお、現在、本組合が計画中の可燃物処理 施設につきましては、地質調査、ボーリング 調査等を実施した結果、地下にガスが溜まっ ている状況は確認されていません。
5	分別収集について、「分別形態は現状を基本とする。ただし、汚れたプラスチックごみについては、住民負担及び水環境への負荷軽減等から…」とあるが、どの程度の住民負担があり、水環境への負荷があるのか。 分別形態を基本とするのであれば、汚れたプラスチックの取扱に関する文書は削除した方が分かりやすいのでは。	ごみの分別形態は現状を変更することは考えていません。 現在、汚れたプラスチックごみについては、洗ってきれいにしては、はないとしては、できれいにはが住民に対し、体がしているのがある。 した、ボスの出したがして、な場合のであるとのが表され、たって、は、では、では、では、では、では、では、では、では、では、では、では、では、で

	I	
		て利用することが適当であるとの方針が出さ
		れたものです。
		次に、容器包装リサイクル協会の品質基準
		では、異物等(食品残渣等)が付着して汚れ
		たプラスチック製容器包装が混入していない
		 こととなっています。(食品残渣等が付着して
		汚れた物や生ごみ、土砂や雫が垂れている汚
		れた物が混入していないこと)
		併せて、運用指針では、「保管時の衛生対策
		から、食品残渣等の付着がないよう洗浄及び
		拭き取る等で容易に付着物を除去できるもの
		については、付着物を除去した後に排出する
		とともに、付着物により汚れているものにつ
		いては排出しないよう指導されたい。」とあります。
		^ / ° 以上のような事象を総合的に考慮し、汚れ
		たプラスチックの取り扱いについての検討結
		果とされたものです。
		未こさ40/にものです。 また、現在プラスチックの選別梱包してい
		, , , , , , , , , , , , , , , , , , , ,
		る施設は、市内の工業団地内にあり、汚れた
		プラスチックの搬入は、悪臭、害虫の発生、
		施設内の衛生、作業環境等の悪化につながる
		ことも考えられます。
		なお、本組合としては、水で洗っても落ち
		ない著しく汚れたプラスチックごみの具体的
		な取り扱いについて、今後、構成市町と十分
		協議を重ねていきたいと考えています。
	「ゴミを安定的に処理できる施設」というこ	「ゴミを安定的に処理できる施設」とは、
	とは、搬入されるゴミを減らしてはならないと	「災害時にも強く、また、排出されたごみを
	いうことになります。各町が実施しているゴミ	将来にわたって安全かつ安定的に処理する能
	減量策で減量すれば、どこかから持ち込むか、	力、機能が確保される施設とする。」ことです。
	分別したリサイクル品を可燃にするなど、環境	したがって「搬入されるゴミを減らしてはな
	への裏切りが起こることが懸念されます。	らない」、「ごみが減ったらどこかから持ち込
		む」、「分別したリサイクル品を焼却する」と
6		いうことではありません。
		なお、ごみの減量化につきましても、各市
		町で進められており、東部圏域の可燃物につ
		きましては平成18年度より平成24年度の
		間で 9,745 t (約 22%) の減量化が進んでい
		ますし、今後も各市町において減量化が進め
	hn r田 ナートベールン r四 b5 F/ 畑に示/エッハ、「々 エート	られると考えます。
	処理方式ですが、環境影響評価では「各方式	環境影響評価は、現況の環境に対し可燃物
7	のもっとも影響が大きいもので評価して問題	処理施設を稼働することによってどの程度影響がなる。
	無かった」との事ですが、最も環境影響が少な	響があるかを予測評価するものであるため、

	い処理方式で行う方式のほうが良いのではないでしょうか。ストーカ炉が一番、他地域でも使用されていますが、なぜ燃料を余計に使用し、より高温で処理するガス化溶融方式を検討されておられるのでしょうか。	予測評価にあたっては、検討を行っている各方式の内、環境に対して最も影響が大きくなる方式で行ったものです。 なお、環境への影響を検証するため、大気等定量的に数値が表せる内容につきましては、処理方式ごとに予測評価を実施しています。 また、検討の対象となった2方式3種類の処理方式については、全国的に見てもどの方式も採用されており、適切に運転・管理されていることから問題ないものと考え、検討の対象としたものです。
8	わずか3週間に満たない短期間のパブリックコメントだけで方針を決定するように思われる。こんな拙速やり方はとってもらいたくない。	このたびのパブリックコメントは、鳥取市の「市民政策コメント実施要綱」等を参考に20日間実施したものです。 今後、住民皆様への説明・周知については、 構成市町の担当課と連携を図って行いたいと 考えています。
9	施設規模の前提となるごみ排出量は、平成2 4年度までの実績をもとにした将来推計であって、東部広域を構成する1市4町の積極的な減量計画に基づくものではないのではないか。 ちなみに、日量30トン減の規模縮のうちの18トンは災害ごみの見直しであり、残り12トンは人口減少による推計となっている。	この第3次報告書における施設規模は、平成24年度までのごみの排出量をもとに、東部広域の構成市町が行っているごみの減量化対策やごみの将来推計、将来人口予測等を加味し、さらに災害ごみの適正な処理量等を勘案し、設定されているものであり、適切であると考えています。
10	事業系ごみを引き続き焼却対象としているが、報告書では収集する事業系ごみだけで焼却対象の33%をしめている。他都市では、事業系ごみは事業者の責任で処理してもらうという方針で臨んでいる自治体もある。事業系ごみが除かれるだけで施般規模が160トンにできる。組合で事業系ごみの対応を見直すべきだと思う。	事業系可燃ごみは、一般家庭から排出される可燃ごみと同じ一般廃棄物の扱いとなるもので、市町村において処理することが法律で義務づけられています。したがって、現在、鳥取市が管理している各焼却施設においても事業系可燃ごみは処理されており、新しい可燃物処理施設でも引き続き焼却対象としているものです。なお、事業系ごみの減量化対策については、各構成市町がそれぞれの実状に合わせて行っていますので、本組合も構成市町と連携を図り、減量化に協力していきたいと考えています。
11	汚れたプラスチックは可燃物とし、焼却発電エネルギーとして活用することが望ましいとあるが、これまでの分別の努力が無駄にならないか。	ごみの分別形態は現状を基本としており、 プラスチックの分別収集を変更することは考 えていません。これまで通りの分別にご協力 をお願いします。 なお、本組合としては、水で洗っても落ち ない著しく汚れたプラスチックごみの具体的

		かでかけい ション・マー人が、 #本十四 1 1 1 1 1
		な取り扱いについて、今後、構成市町と十分
		協議を重ねていきたいと考えています。
	270 t/日(90トン炉3基)の計画から	炉数につきましては、新たな施設規模、経
	240t/日になったが、炉は 120 トン炉を	済性、熱効率及び他都市の事例等を踏まえ総
	2基と炉の規模は大きくなっている。国が推進	合的に検討し、2炉構成が望ましいとされた
	している高効率ごみ発電の対象としては規模	ものです。
12	の大きい炉の方が、現在の技術では発電に適し	なお、搬入された可燃ごみは、一旦、ごみ
	ていることから、2炉にしたと考えられるが、	ピットに貯留されますが、ごみピットの容量
	炉が大きくなれば燃やすごみを減らすことが	は7~10日分程度を計画しており、一定量を
	出来なくなるのではないか。	焼却していきますので1日当りの焼却量が大
		きく変動することはなく、ごみ減量化に逆行
		するものではありません。
	公設民営(建設・運営一括発注方式)が望まし	事業実施にあたっては、公設公営方式、公
	いとしているが、一企業に任せるということ	設民営方式、PFI 方式等があります。このた
	は、行政の施策が反映できなくなる恐れがあ	びの委員会において、この3方式について検
	り、不安がある。	討した結果、経済性及び競争性の確保等の観
		点から、公設民営方式(建設・運営一括発注)
13		が望ましいと判断されたものです。
		なお、施設の建設及び所有権、施設の運営
		の最終責任は本組合が担いますので、今後、
		維持管理等運営に対する監視体制等について
		検討し、安全性や適切な管理運営を確保して
		いきます。
	ごみ焼却施設から排出される排ガスには有	新施設では、ごみを燃やして発生する排ガ
	害物質は含まれていないのか。また、その有害	スに対し、最新の排ガス処理設備を設置して、
	物質が雨で地中や水中に溶け込まないのか。	法令で定める基準よりもさらに厳しい目標値
		を設定して周辺環境に影響を与えない施設と
		なるよう計画しています。
		また、環境影響評価では、現在検討中の処
		理方式ごとに最も影響が大きい各条件を基に
		予測評価を行いました。その結果からも施設
14		による大気質への影響は極めて小さいことを
14		確認しています。
		なお、排ガスに含まれている極微量の物質
		が雨に溶け込んで地中に浸透していくことも
		考えられますが、極微量であるため自然界へ
		の影響はほとんど無いものと考えます。
		施設稼働後も環境の状況を把握するため、
		施設周辺の土壌及び地下水等の調査を定期的
		に実施し、その結果を住民の皆様に報告いた
		します。
	他都市で災害等が発生した場合、その瓦礫等	他都市で災害等が発生した際に新施設での
15	は受け入れるのか。また、福島や東北の瓦礫に	ごみ処理の依頼があった場合は、必ず地元住
1	ついては受け入れるのか。	民の皆さまに協議することとし、理解が得ら

		れた場合に受け入れが出来るものと考えま
		す。
		なお、鳥取市が管理している各焼却施設で
		は福島や東北の瓦礫は受け入れていません。
	組合が考えている焼却熱を利用した発電の	プラスチック類の分別を変更するものでは
	発想は、現在の消費電力を賄うためにはもっと	ないので、基本的に焼却対象物としてプラス
	もっとごみを増やして、さらには熱効率のよい	チック類が増えることはありません。
	プラスチック類を増やして発電量を上げるこ	可燃物処理施設での発電につきましては、
	とに繋がり、そのことにより、焼却炉の巨大化	排出されたごみの持つエネルギーを効率的に
16	へつながると思います。	有効利用するものですので、発電量を多くす
		るために、ごみを増やしたりするものではあ
		りません。
		また、現在の計画している施設規模も27
		0 t/日から240 t/日に縮小して計画し
		ており、巨大化へ繋がるものではありません。

「第3次報告書」の内容以外の主な意見の概要と本組合の見解について

No	主な意見の概要	本組合の見解
	可燃物処理施設は本当に必要なの	ごみ処理の目的は、生活環境の保全及び公
	か。代わりにリサイクル施設で対応で	衆衛生の向上を図るものです。
	きないのか。	ごみをリサイクルすることは重要でありま
1		すが、すべてのごみがリサイクル出来ないた
		め、各自治体は実情に応じて、可燃物処理施
		設、不燃物処理施設等を建設しているもので
		す。
	クリーンセンターやずがあった場	八頭環境施設組合と地元7集落が「クリー
	所の周辺には可燃物処理施設は建設	ンセンターやず」に関する協定を締結されて
	しないとの約束があったにも関わら	おり、条文の中に「次期施設は本施設及びそ
	ず、新しい処理施設を建設することは	の周辺には設置しないものとする」という項
	許されることではない。	目があることは承知しています。
		新可燃物処理施設の建設候補地の選定にあ
		たっては、東部圏域全体の処理を考え、収集
2		運搬効率、経済性、環境保全等の観点から総
		合的に検討し、現在の候補地を新たにお願い
		しているものです。
		なお、現在、協定書中の「次期施設は本施」
		設及びその周辺には設置しないものとする」
		の解釈につきましては、裁判で係争中であり
		ます。
	大型施設を1ヶ所につくるのでは	ごみ処理に伴うダイオキシン類の発生を防
	なく、災害や事故等のリスクを分散す	止するため、国では平成9年に「ごみ処理に
	るために中規模の施設を2~3ヶ所	係るダイオキシン類発生防止等ガイドライ
	つくるべきではないのか。	ン」を策定しました。そのガイドラインでは、
		小型焼却炉を一定規模以上の全連続炉に集約
		することにより、燃焼を安定させ、ダイオキ
		シン類の発生を防止するとともに、バグフィ
		ルタ等の高度な排ガス処理設備等を設置する
3		こととされています。併せて、全連続炉から
		発生する熱エネルギーを有効に活用し、発電
		等を行うこととしています。
		本組合では国や県の方針を踏まえるととも
		に、東部圏域の状況等を総合的に検討し、可
		燃物処理施設は東部圏域に1施設としたもの
		です。
		なお、施設の設計にあたっては、耐震性等
		を考慮した災害に強い施設とする方針です。
	ごみ問題は、住民生活に関係する問	施設整備に関しましては、まず、建設を計
4	題なのできちんと住民説明会を行っ	画している地元の皆様にご理解をいただくこ
	た後でパブリックコメントをすべき	とが必要であり、本件についても地権者集落

	ではないか。	の皆様に説明を行った後にパブリックコメン
		トを実施したものです。
		今後、構成市町と連携を図り、住民の皆様
		へ周知したいと考えており、必要に応じて説
		明会の開催も行ってまいります。
	新しい可燃物処理施設が出来れば、	ごみ収集車両等の交通経路は、鳥取自動車
	河原インター線をごみ収集車が通行	道や河原インター線などの主要幹線道路の走
	することになる。それにより交通量が	行を基本とします。
	増し、危険が増大する。	なお、収集車の通行に伴う増加率は1割未
5		満と想定していますが、収集車両の走行につ
		きましては、法令厳守はもちろんのこと、登
		下校の時間帯、歩行者等に十分注意するよう、
		強く、構成市町村及び収集運搬の責任者に申
		し入れします。
	行政は安全だと言うが、ダイオキシ	環境影響評価では、建設予定地周辺の7地
	ンの全てが紫外線では分解されない。	点でダイオキシン類の現状調査を実施してい
		ます。ダイオキシン類については、処理方式
		の中で、排ガスによる影響が最大となる値を
		基に予測評価を行いました。
		その結果から、大気中のダイオキシン類の
		各調査地点の濃度は、年平均値で0.0058~
		0.0091pg/TEQ/m³です。この値は、環境基準の
6		0.6 pg-TEQ/㎡以下であり、鳥取県ダイオキシ
		ン類常時監視結果報告書の各測定地点のダイ
		オキシン類濃度の年間平均値(0.012~
		0.014pg-TEQ/㎡)からみても、安全であると
		考えています。
		また、ダイオキシン類については野焼き等
		でも発生することから自然界に存在していま
		すが、一般的に紫外線により約7年で分解す
		るとされています。
	絶滅危惧種の生息する地は建設予	ご指摘のとおり建設予定地内の一部におい
	定地からはずすべきではないのか。	て絶滅危惧種が確認されていますが、これに
		ついては移殖等の保全措置を講じる計画であ
		り、具体的内容については専門家等に指導助
7		言を頂きながら進めていきます。
		また、保全措置の実施状況やその後のモニ
		タリングの結果等につきましては、鳥取県に
		報告すると共に、本組合ホームページ等で住
		民の方々へ情報公開いたします。
	地元だけではなく周辺集落にも説	可燃物処理施設に関する説明会につきまし
	明に来てほしい。	ては、まず、施設建設についてご理解をいた
8		だくため、地元地権者集落を中心に行ってい
		ます。その他の周辺集落等の説明会について
		も開催を検討していきます。

9	事故防止マニュアルを作成し、住民 に提示すべきではないのか。	事故防止対策のマニュアルについては、処理方式が決定し、具体的な施設計画を検討する時点で専門家の意見も踏まえ、施設に沿った計画を作成し、周辺住民の皆さまへ周知したいと考えています。
10	地権者集落で説明した地域振興策 等について、再度、説明してほしい。	地権者集落説明会における地域振興策等に つきましては、現在、地権者集落の皆様と集 落別に協議を行っております。内容につきま しては、各集落の個別案件や地域の振興策も あり、今後も話し合いの場を設けてご説明・ 協議していきたいと考えています。
11	施設を建設することに話が集中しているが、どのようにごみ減量化に取り組むのかについて、市民との話し合いが必要ではないか。	ごみの減量化につきましては、基本的に市町村が行うものであるため、構成市町が実状に応じて積極的に取り組んでおられます。本組合も構成市町と連携してごみの減量化に協力していきたいと考えています。
12	処理方式について、環境影響評価と 施設整備検討委員会の第3次報告書 とでは内容が変更されている。もう一 度、処理方式が決定された後に環境影 響評価を実施することと併せて準備 書に対する住民の疑問点に真剣に回 答する必要がある。	環境影響評価書につかには、りのでは、りのでは、りのでは、りのでは、りのでででででででででででででででで
13	現在、建設を予定している場所は市の中心地から離れており、収集コスト等を考えれば市の中心地が適地と考えるがどうか。	可燃物処理施設の建設候補地については、 平成12年当時、東部圏域内の各市町村から 提案された40箇所の候補地を基に、平成1 8年に地理的条件や収集運搬効率、土地の形 状等東部圏域全体を捉え、総合的に検討し、 選定したものです。
14	地下水、空気の汚染など環境悪化に 心配があります。可燃物処理施設が出 来れば、長い年月の間に自然災害も含	現在計画中の可燃物処理施設より発生する 排ガスについては、最新の排ガス処理設備を 設置し、法令で定める基準よりもさらに厳し

	め汚染される事も考えられます。空気	い計画目標値を設定して周辺環境に対する影
	の滞留を懸念しており、可燃物処理施	響を最小限に抑えられる施設となるよう計画
	設への収集車の排気ガス等でこれ以	しています。そのため、排ガスに含まれてい
	上の環境悪化に繋がるのではないか	る極微量の物質による自然界への影響は少な
	と不安がある。	いと考えますが、環境への影響を確認するた
		め、施設周辺の土壌及び地下水等の調査を定
		期的に実施し、その結果を住民の皆様に報告
		いたします。
		また、ごみ収集車両については、運行管理
		により車両の集中を回避するとともに、構成
		市町においては、ハイブリッド車の導入も検
		討しており、安全運転の徹底等と併せて、極
		力排ガスの発生を抑えるよう努力いたしま
		す。
	 近年、起きている想定外の災害(局	(グェスタイプ) 災害発生時は、住民の安全を最優先に考え、
	地豪雨等)に対し、どのように対応す	可燃物処理施設には、緊急避難場所としての
	るのか。	機能も備えることとしています。
		なお、事業区域に計画している2つの調整
15		池は30年確率降雨強度で計画しており、現
		在の溜池より安全性が高いものであるため、
		施設の設置後は災害リスクが低減されると考
		えます。
	すす病の原因となる害虫がなぜ発	文献によると、すす病は、アブラムシやコ
	生したのか教えていただきたい。	ナジラミなど植物の汁を吸う害虫の排泄物を
		栄養として菌が繁殖すると記述されていま
		す。
16		その原因となるアブラムシやコナジラミで
		すが、いずれも日本に広く生息しており、飛
		来もしくは風に乗ってくるものと想定されて
		います。
	他のごみとプラスチックごみが混	現在計画している可燃物処理施設は、不燃
	ざって重金属の問題が発生すると聞	ごみ資源化の過程で排出される軽量残渣(主
	いたが本当か。	にプラスチック類)等を焼却対象とすること
		を計画しています。
		プラスチック製品においては、必要に応じ
		て塗料や添加剤等が使用されており、焼却す
17		ることで重金属類が排ガスに含まれることも
		考えられますが、新可燃物処理施設において
		は、プラスチック類が混入しても環境保全が
		確保できるよう、バグフィルタ等の最新の排
		ガス設備を設置する計画としており、排ガス
		に重金属類が含まれている場合でも概ね除去
		され、環境への影響は軽微であると考えます。